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What is an RFID?

An EPC RFID tag is:
Small electronic device to
identify items

Projected to be on all items sold

Cheap and disposable

Used in the supply chain to
track goods
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RFID classification methods

By standards

ISO 18000-*, 14443, 15693

EPCglobal

NFC

By frequencies

Low Frequency (LF): 125/134.2 KHz

High Frequency (HF): 13.56MHz (ISM)

Ultra-HF (UHF): 856-930MHz

Microwave Frequency: 2.4 GHz (ISM)

By power source

Passive

Semi-passive

Active
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The privacy problem

Causes

RFIDs emit their ID to any query

Their owners are easy to track

Long read range, no line-of-sight

Non human-detectable reader signal

Unique ID

EPC protocol
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Solutions to the privacy problem

Physical layer-based

Put the tag in a Faraday cage (ex.: mesh wallet)

Kill the tag (ex.: EPC)

Blocker tag, RFID Guardian

Noisy tag

Noisy reader

Protocol layer-based

Pseudonym-rotation

Hash-based (ex.: OSK)

Keytree-based

Ad-hoc primitives (ex. ProbIP)
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Kill the tag

How it works

1 Give the tag a tag-specific 32-bit PIN code

2 The tag self-destructs

Advantages

Easy to implement

Once killed, cannot be re-awakened

Disadvantages

Loose many of RFIDs’ advantages, e.g.:

Automatic washing-machine

Automatic recognition of items in the fridge

Returning to shops defective items without receipts

Mate Soos (INRIA Rhône-Alpes) Thesis defense 6th of October 2009 8 / 55



Noisy tag

How it works

1 Generates pseudo-random noise on the channel

2 Sends reader the noise seed

3 Reader subtracts the noise and recovers the data

Advantages

Simple to implement, should be cheap

Perfect secrecy of data

Multiple noisy tags enhance security

Disadvantages

Random noise needs to be known by the reader

Needs to be worn all the time

Implementation possibility has been questioned
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Key-trees

Setup

Tags are leaves of a multi-level tree

Tag identifies itself with a key for each level

Reader brute-forces each level

This is nlognp speed, where n is depth, p is pop. size

Example
Root

Keys:{Ø}

Tags using k1

Keys:{k1}

Leaf

Keys:{k1, k1,1}

T1,1

Leaf

Keys:{k1, k1,2}

T1,2

Tags using k2

Keys:{k2}

Leaf

Keys:{k2, k2,1}

T2,1

Leaf

Keys:{k2, k2,2}

T2,2
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Key-trees

Advantages

Good privacy

Fast (log-time identification)

Extensively researched

Disadvantages

Anonymity loss if tags are opened

Needs cryptographic function
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Authentication in RFIDs

What it is

Used to verify that other party is who he claims to be

Achieved through demonstration that secret is known

Why it is needed

Against counterfeiting (e.g. medicines)

Receiptless guarantee repairs

Solutions

Challenge-response protocol using lightweight
crypto-primitives (e.g. Grain)

Physically Unclonable Functions (PUF)

Rabin cryptosystem-based protocols

LPN-based protocols (e.g. HB#)
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Topic of the Thesis

RFIDs cannot use standard protocols

Privacy protection

Authentication service

RFIDs require

Novel RFID protocols or crypto-primitives

Analysis of these novel protocols for their security

Mate Soos (INRIA Rhône-Alpes) Thesis defense 6th of October 2009 13 / 55



Outline

1 Context
RFID hardware
The privacy problem
Authentication in RFIDs

2 Ad-hoc protocols
ProbIP
EProbIP

3 Stream ciphers in RFIDs
Analysing stream ciphers with SAT solvers
Adapting SAT solvers to stream ciphers
Adapting stream cipher representation to SAT solvers
Attacks

4 Conclusions
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Ad-hoc protocols — Motivations

Standard ciphers seem not well-adapted to RFIDs

By designing a protocol from scratch, it could better fit RFID
constraints

Could find potentially unexplored areas, and exploit them
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ProbIP scheme

Public: keysize K, no. packets sent

Reader R Tag Ti
Database L: Secret key: ki

{. . . , (ki, ID),. . . }

HELLO −→
generate P packets

<a1, b1>,. . .,<aL, bL>
s.t. aj ∈r [1,K], bj ∈r {0, 1}∑L

j=1

[
ki[aj ]⊕ bj

]
= L/2

←− generated packets

find (ki, ID) ∈ L
s.t. packets fit∑L

j=1

[
ki[aj ]⊕ bj

]
= L/2
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Breaking ProbIP

Ouafi et al. have broken the security of ProbIP.
Packets are represented as

L∑
i=1

v1
i (K[i]⊕ b1i ) = L/2

L∑
i=1

v2
i (K[i]⊕ b2i ) = L/2

...

L∑
i=1

vl
i(K[i]⊕ bli) = L/2

l — no of packets gathered by the attacker

v – indicator function of given key bit is in the packet

Resulting matrix is solved with Gaussian elimination, in poly-time
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Error-introducing ProbIP

EProbIP is a extension to the original ProbIP protocol:

Tags sometimes send erroneous packets

Reader knows the possible key, so it can filter them

Attacker cannot distinguish between packets

Mate Soos (INRIA Rhône-Alpes) Thesis defense 6th of October 2009 18 / 55



EProbIP — security evaluation

Setup:

1 Generate keys (k1, . . . , kn) uniquely and randomly with GenKey

2 Initialise R with keys (k1, . . . , kn)

3 Set each Ti’s key ki with a SetKey call

Phase 1 (Learning):

4 Let A do xA TagInit calls with TA and records received packets into XA

5 Let A do xB TagInit calls with TB and records received packets into XB

Phase 2 (Challenge):

6 TC
r← {TA, TB}

7 A performs xC TagInit calls with TC and records received packets into XC

8 A performs calculations on the recorded packets to guess TC
?= TA

Experiment succeeds if A guessed TC correctly

Mate Soos (INRIA Rhône-Alpes) Thesis defense 6th of October 2009 19 / 55



How can the attacker win the privacy exp.?

Possible methods

1 Find a key that fits most packets — using a MaxSAT solver

2 Use a tailor-made approach using out that the error rate is low

1) Using MaxSAT solvers

Solves for any error rate

Can work on a small amount of packets

Does not benefit from more packets

2) Using strategy adapted to low error rate

Needs a large amount of packets to work

Can benefit from low error rate

Benefits from more packets
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Strategy adapted to low error-rate

Input: packets XA ∪XC

Output: TA = TC or TA 6= TC

Pick a set of k most prevalent key bits;1

foreach combination of true-false for the picked bits do2

picked key bits ← selected combination;3

while enough packets indicate: key bit must be set to a value do4

key bit ← value indicated;5

end6

if all key bits are set and the satisfied portion of packets is about7

1− err then
return TA = TC ;8

end9

end10

return TA 6= TC ;11
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Implementation: in MiniSat

Modified MiniSat such that:

Inferences are made based on multiple packets

X number of packets needed to make an inference

The X the larger, the more ’robust’ the solving

But more information will be lost

i.e. more packets → faster solving
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Security rating results
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Ad-hoc protocols — What have we learnt

Ad-hoc primitives need multiple cycles of design&analysis

Difficult to evaluate the security of the resulting schemes

Can take many years to develop a robust ad-hoc protocol
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Stream ciphers in RFIDs

Motivations

We have seen that ad-hoc protocols are notoriously un-robust

Stream ciphers could be adapted to RFIDs — eSTREAM project

Analysis of hardware-oriented stream ciphers is possible with SAT
solvers

Contributions

Adapt the SAT solver to the environment of cryptography

Adapt the stream cipher’s representation to SAT solvers

Solve a number of ciphers
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What is a SAT solver

Solves a problem in CNF

CNF is an “and of or-s”

¬x1 ∨ ¬x3 ¬x2 ∨ x3 x1 ∨ x2

Uses DPLL(ϕ) algorithm

1 If formula ϕ is trivial, return SAT/UNSAT

2 Picks a variable v to branch on

3 v ← value

4 Simplifies formula to ϕ′ and calls DPLL(ϕ′)

5 if SAT, output SAT

6 if UNSAT, v ← opposite value

7 Simplifies formula to ϕ′′ and calls DPLL(ϕ′′)

8 if SAT, output SAT

9 if UNSAT, output UNSAT
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Problem with XOR-s

The truth
a⊕ b⊕ c

must be put into the solver as

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

So, straightforward conversion takes 2n−1 clauses to model an n-long XOR
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Solution until now

Example

x1 ⊕ x2 ⊕ x3 ⊕ x4⊕x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9

Modelled in CNF:

¬i1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

¬i2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9

i1 ⊕ i2

Problems

Still very long to model

Needs extra vars
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Solution to XOR: xor-clause

Example

a⊕ b⊕ c

Represents regular clauses

a ∨ ¬b ∨ ¬c (1) ¬a ∨ ¬b ∨ c (2)
a ∨ b ∨ c (3) ¬a ∨ b ∨ ¬c (4)

changes appearance to match the situation

Example set-up

a = true b = true c = false

⇒ ¬a ∨ ¬b ∨ c
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Solution to XOR: xor-clause

Example

a⊕ b⊕ c

Represents regular clauses

a ∨ ¬b ∨ ¬c (1) ¬a ∨ ¬b ∨ c (2)
a ∨ b ∨ c (3) ¬a ∨ b ∨ ¬c (4)

changes appearance to match the situation

Results

2.2x speed

Order of magnitude savings in memory
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Solution to XOR: xor-clause

Example

a⊕ b⊕ c

Represents regular clauses

a ∨ ¬b ∨ ¬c (1) ¬a ∨ ¬b ∨ c (2)
a ∨ b ∨ c (3) ¬a ∨ b ∨ ¬c (4)

changes appearance to match the situation

Challenges overcome

MiniSat is complex, we needed to completely understand it

Design choices were difficult: e.g. we use special memory alloc. to
maximise cache-hit
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Dynamic behaviour analysis

Example search tree Visualised
Guesses

Propagations

Generated learnt
clauses

Clause group causing
the propagation

Calculated stats
Average depth

Most conflicted clauses

No. of guess/branch

Most guessed vars

Most propagated vars
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Statistics generated

Further stats

Learnt clause size distribution

Branch length distribution

Ex. learnt clause distribution
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Gaussian elimination

Reasoning

Gaussian elimination is efficient for solving systems of linear equations

xor-clause is a linear equation → use Gauss elim. to solve them

Implementation

A-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1



N-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1
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Gaussian elimination results
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Gaussian elimination results

No.
help bits

Gaussian elimination active until level

Inactive 2 3

Crypto-1 12 27.0 s 25.8 s(4%) 26.5 s(2%)
HiTag2 18 34.8 s 33.9 s(3%) 29.5 s(15%)
Bivium B 60 174.0 s 165.1 s(5%) 171.1 s(2%)

Highlights

Search space reduced by up to 87%

Speedup between 0-15%

A mix of linear and non-linear methods

Adds possibility to add other algebraic tools → potentially major
speedup
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Logical circuit representation

Example

Legend

Variables → boxes

Functions → hexagons

Complexity measures

Depth of keystream bit

Dependency no.: state ↔ keystream

Difficulty of functions: representation
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Dependency graph generator

Example HiTag2 logical circuit

Usage

Calculate mentioned statistics

Visual clue
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Optimising representation of non-linear functions

Example GF(2) polynomial

x1 + x1x2 + x2x3 + x1x3

Usual representation

x1 + i1 + i2 + i3

No. of clauses: 3× 3 regular
+ 1 xor-clause∑

clause length: 31

2 extra variables

Karnaugh-table representation

¬x1 ∨ ¬x3 ¬x2 ∨ x3 x1 ∨ x2

No. of clauses: 3 regular

∑
clause length: 6

No extra variables
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Crypto-1

Background

Used for micropayment in public transport

Best SAT solver-based attack : 200 s to solve on avg.

Best non-SAT solver-based attack: 0.1 s through algebraic attack

Our techniques
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Find its secret state in approx. 40 s
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Bivium B

Background

Simplified version of Trivium eSTREAM candidate

Best SAT solver-based attack against it takes 243 s

Non-SAT solver-based attack: 264.5 s

Our techniques
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Stream ciphers in RFIDs — What we have learnt

SAT solvers are useful to study hardware-oriented stream ciphers

Best results are achieved by adapting both solvers to ciphers and
cipher’s representation to solvers

Such a system is able to break certain ciphers
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Contributions of the Thesis

Contributions

Created an in-depth state of the art

Conceived two ad-hoc protocols, ProbIP [1] and EProbIP

Analysed the Di Pietro-Molva ad-hoc protocol [2]

Improved SAT solver-based cryptographic attacks [3,4]

References

1 “Secret Shuffling: A Novel Approach to RFID Private Identification” by
Castelluccia and Soos, RFIDSec’07

2 “Analysing the Molva and Di Pietro Private RFID Authentication Scheme”
by Soos, RFIDSec’08

3 “Solving Low-Complexity Ciphers with Optimized SAT solvers” by Nohl
and Soos, EUROCRYPT’09 (poster)

4 “Extending SAT Solvers to Cryptographic Problems” by Soos,
Castelluccia and Nohl, SAT’09
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Conclusions

RFID hardware is unnatural to optimise for

Ad-hoc protocols are notoriously fragile, but could be a solution
in the long run

For immediate use, standard crypto-primitives optimised for
RFIDs (e.g. HW-oriented stream ciphers) are more suited
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Future work

Post-Doc in the SALSA team of INRIA

Distributed SAT solving

Iterative SAT solving

Mix of SAT solving and algebraic techniques

RFID-AP ANR project
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Thank you for your time
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Di Pietro-Molva scheme

The Di-Pietro Molva scheme works as follows:

1 Tag generates nonces r1 . . . r2
2 Tag sends αp = rp ⊕ k
3 Tag sends V [p] = DPM(rp)
4 Reader computes DPM(αp ⊕ k) = V ′[p] for all k — the one that fits

is the tag

5 Once tag is identified, authentication takes place
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Found shortcomings

Problems found in the scheme (published as):

Does not scale — finding tag is linear in population size

Due to func. DPM , there are 22|k|/3 key-equivalence classes (i.e.
identification is bad)

(αp, V [p]) pairs do not always contain enough information (pairs are
not independent)

DPM is not secure, each protocol run reveals 1 bit of secret key
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Research results until now

“Attacking Bivium with MiniSat” by (McDonald et al.)

“Attacking Bivium Using SAT Solvers” by (Eibach et al.)
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Research results until now

We introduce more randomness

Reference state bits to assign are picked randomly

The picked bits are assigned randomly true or false

Clauses are randomly permutated inside MiniSat

MiniSat’s internal seed (used to randomly explore the search space) is
set randomly

MiniSat’s random number generator has been replaced
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LPN-based

How it works (ex. Random-HB#)

Reader R Tag Ti
Secrets X,Y Secrets X,Y

ν ∈R {{0, 1}m|
Prob.(νi = 1) = η for 1 ≤ i ≤ m}

Choose b ∈R {0, 1}kY
b←−

Choose a ∈R {a, 1}kX
−→ a

Let z = a · C ⊕ b · Y ⊕ ν
z←−

Check
Hwt(a ·X ⊕ b · Y ⊕ z) ≤ um
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HB# cont.

Advantages

Simple to implement: needs XOR, random number generator

Protocol is well-analysed by its authors

Disadvantages

Transferred data is large (→ slow)

LPN problem quite unresearched, new research is pushing up secure
parameter sizes
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Example protocol No. 1

Reader Rj Tag Ti
Generate nonce IV1

−→ IV1

Generate nonce IV2

and calculate
σ = ID ⊕ cipher(k, IV1 ⊕ IV2)

←− IV2, σ
find (k, ID) ∈ L s.t.
ID = σ ⊕ cipher(k,
IV1 ⊕ IV2)
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Example protocol No. 2

Reader Rj Tag Ti

Generate nonce IV1
−→ IV1

Generate nonce IV2 and
calculate
M = cipher(IV1, IV2)
σ = ID ⊕ cipher(k,M)

←− IV2, σ
calculate
M = cipher(IV1, IV2)

find (k, ID) ∈ L s.t.
ID = σ ⊕ cipher(k,M)

optional — only for mutual authentication

calculate
τ = ID ⊕ cipher(k,M ⊕ 1)

−→ τ

check τ
?
= ID ⊕ cipher(k,M ⊕ 1)
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