Privacy-preserving Security Protocols for RFIDs Thesis defense

Mate Soos

INRIA Rhône-Alpes

6th of October 2009

イロト 不得 トイヨト イヨト … ヨ

Table of Contents

Mate Soos (INRIA Rhône-Alpes)

Thesis defense

6th of October 2009 2 / 55

イロト 不得 トイヨト イヨト … ヨ

Outline

Context

- RFID hardware
- The privacy problem
- Authentication in RFIDs

Ad-hoc protocols

- ProblP
- EProbIP

3 Stream ciphers in RFIDs

- Analysing stream ciphers with SAT solvers
- Adapting SAT solvers to stream ciphers
- Adapting stream cipher representation to SAT solvers
- Attacks

Conclusions

- 4 同 2 4 日 2 4 日 2

What is an RFID?

An EPC RFID tag is:

- Small electronic device to identify items
- Projected to be on all items sold
- Cheap and disposable
- Used in the supply chain to track goods

- 4 同 2 4 回 2 4 回 2

RFID classification methods

By standards

- ISO 18000-*, 14443, 15693
- EPCglobal
- NFC

By frequencies

- Low Frequency (LF): 125/134.2 KHz
- High Frequency (HF): 13.56MHz (ISM)
- Ultra-HF (UHF): 856-930MHz
- Microwave Frequency: 2.4 GHz (ISM)

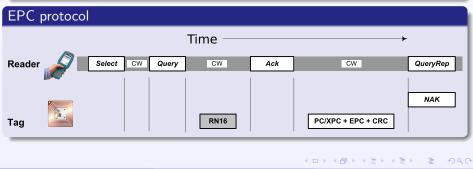
By power source

- Passive
- Semi-passive
- Active

The privacy problem

Causes

- RFIDs emit their ID to any query
- Their owners are easy to track
- Long read range, no line-of-sight
- Non human-detectable reader signal
- Unique ID



Solutions to the privacy problem

Physical layer-based

- Put the tag in a Faraday cage (ex.: mesh wallet)
- Kill the tag (ex.: EPC)
- Blocker tag, RFID Guardian
- Noisy tag
- Noisy reader

Protocol layer-based

- Pseudonym-rotation
- Hash-based (ex.: OSK) →→→
- Keytree-based
- Ad-hoc primitives (ex. ProbIP)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Kill the tag

How it works

- Give the tag a tag-specific 32-bit PIN code
- 2 The tag self-destructs

Advantages

- Easy to implement
- Once killed, cannot be re-awakened

Disadvantages

Loose many of RFIDs' advantages, e.g.:

- Automatic washing-machine
- Automatic recognition of items in the fridge
- Returning to shops defective items without receipts

< ロ > < 同 > < 回 > < 回 > < 回 > <

Noisy tag

How it works

- Generates pseudo-random noise on the channel
- 2 Sends reader the noise seed
- Reader subtracts the noise and recovers the data

Advantages

- Simple to implement, should be cheap
- Perfect secrecy of data
- Multiple noisy tags enhance security

Disadvantages

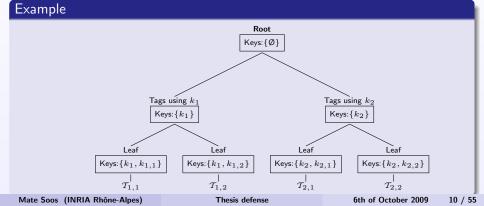
- Random noise needs to be known by the reader
- Needs to be worn all the time
- Implementation possibility has been questioned

- 4 同 2 4 回 2 4 回 2

Key-trees

Setup

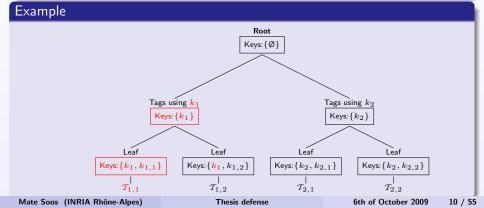
- Tags are leaves of a multi-level tree
- Tag identifies itself with a key for each level
- Reader brute-forces each level
- This is $nlog_n p$ speed, where n is depth, p is pop. size



Key-trees

Setup

- Tags are leaves of a multi-level tree
- Tag identifies itself with a key for each level
- Reader brute-forces each level
- This is $nlog_n p$ speed, where n is depth, p is pop. size



Key-trees

Advantages

- Good privacy
- Fast (log-time identification)
- Extensively researched

Disadvantages

- Anonymity loss if tags are opened
- Needs cryptographic function

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Authentication in RFIDs

What it is

- Used to verify that other party is who he claims to be
- Achieved through demonstration that secret is known

Why it is needed

- Against counterfeiting (e.g. medicines)
- Receiptless guarantee repairs

Solutions

- Challenge-response protocol using lightweight crypto-primitives (e.g. Grain)
- Physically Unclonable Functions (PUF)
- Rabin cryptosystem-based protocols
- LPN-based protocols (e.g. HB[#])

< ロ > < 同 > < 回 > < 回 > < 回 > <

Topic of the Thesis

RFIDs cannot use standard protocols

- Privacy protection
- Authentication service

RFIDs require

- Novel RFID protocols or crypto-primitives
- Analysis of these novel protocols for their security

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Outline

Context

- RFID hardware
- The privacy problem
- Authentication in RFIDs

2 Ad-hoc protocols

- ProblP
- EProblP

3 Stream ciphers in RFIDs

- Analysing stream ciphers with SAT solvers
- Adapting SAT solvers to stream ciphers
- Adapting stream cipher representation to SAT solvers
- Attacks

Conclusions

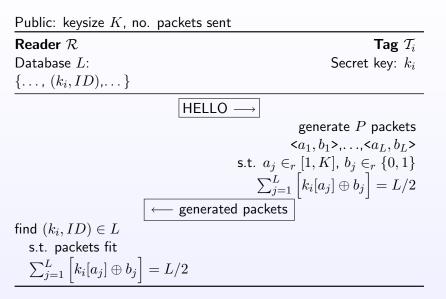
Mate Soos (INRIA Rhône-Alpes)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Ad-hoc protocols — Motivations

- Standard ciphers seem not well-adapted to RFIDs
- By designing a protocol from scratch, it could better fit RFID constraints
- Could find potentially unexplored areas, and exploit them

ProbIP scheme



ショート きょうしょう しょうしょう

Breaking ProbIP

Ouafi et al. have broken the security of ProbIP. Packets are represented as

$$\sum_{i=1}^{L} v_i^1(K[i] \oplus b_i^1) = L/2$$
$$\sum_{i=1}^{L} v_i^2(K[i] \oplus b_i^2) = L/2$$
$$\vdots$$
$$\sum_{i=1}^{L} v_i^l(K[i] \oplus b_i^l) = L/2$$

- $\bullet \ l$ no of packets gathered by the attacker
- v indicator function of given key bit is in the packet

Resulting matrix is solved with Gaussian elimination, in poly-time,

Mate Soos (INRIA Rhône-Alpes)

Thesis defense

Error-introducing ProbIP

EProbIP is a extension to the original ProbIP protocol:

- Tags sometimes send erroneous packets
- Reader knows the possible key, so it can filter them
- Attacker cannot distinguish between packets

- < E > < E >

EProbIP — security evaluation

Setup:

- **(**) Generate keys (k_1,\ldots,k_n) uniquely and randomly with GENKEY
- 2 Initialise \mathcal{R} with keys (k_1, \ldots, k_n)
- **③** Set each \mathcal{T}_i 's key k_i with a SETKEY call

Phase 1 (Learning):

Let A do x_A TAGINIT calls with T_A and records received packets into X_A
Let A do x_B TAGINIT calls with T_B and records received packets into X_B
Phase 2 (Challenge):

 ${f 0}$ ${\cal A}$ performs x_C TAGINIT calls with ${\cal T}_C$ and records received packets into X_C

③ ${\cal A}$ performs calculations on the recorded packets to guess ${\cal T}_C \stackrel{?}{=} {\cal T}_A$

Experiment succeeds if $\mathcal A$ guessed $\mathcal T_{\mathcal C}$ correctly

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

How can the attacker win the privacy exp.?

Possible methods

- I Find a key that fits most packets using a MaxSAT solver
- ② Use a tailor-made approach using out that the error rate is low

How can the attacker win the privacy exp.?

Possible methods

- I Find a key that fits most packets using a MaxSAT solver
- ② Use a tailor-made approach using out that the error rate is low

1) Using MaxSAT solvers

- Solves for *any* error rate
- Can work on a small amount of packets
- Does not benefit from more packets

How can the attacker win the privacy exp.?

Possible methods

- I Find a key that fits most packets using a MaxSAT solver
- ② Use a tailor-made approach using out that the error rate is low

1) Using MaxSAT solvers

- Solves for any error rate
- Can work on a small amount of packets
- Does not benefit from more packets

2) Using strategy adapted to low error rate

- Needs a large amount of packets to work
- Can benefit from low error rate
- Benefits from more packets

イロト イポト イヨト イヨト 三日

Input: packets $X_A \cup X_C$ **Output**: $T_A = T_C$ or $T_A \neq T_C$ **1** Pick a set of k most prevalent key bits: foreach combination of true-false for the picked bits do 2 3 picked key bits \leftarrow selected combination; while enough packets indicate: key bit must be set to a value do 4 key bit \leftarrow value indicated; 5 6 end if all key bits are set and the satisfied portion of packets is about 7 1 - err then return $\mathcal{T}_A = \mathcal{T}_C$; 8 9 end 10 end 11 return $T_A \neq T_C$;

Mate Soos (INRIA Rhône-Alpes)

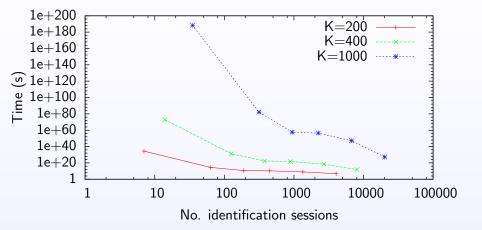
イロト イポト イヨト イヨト 三日

Implementation: in MiniSat

Modified MiniSat such that:

- Inferences are made based on multiple packets
- X number of packets needed to make an inference
- The ${\boldsymbol X}$ the larger, the more 'robust' the solving
- But more information will be lost
- i.e. more packets \rightarrow faster solving

Security rating results



Ad-hoc protocols — What have we learnt

- Ad-hoc primitives need multiple cycles of design&analysis
- Difficult to evaluate the security of the resulting schemes
- Can take many years to develop a robust ad-hoc protocol

Outline

Context

- RFID hardware
- The privacy problem
- Authentication in RFIDs

Ad-hoc protocols

- ProblP
- EProbIP

3 Stream ciphers in RFIDs

- Analysing stream ciphers with SAT solvers
- Adapting SAT solvers to stream ciphers
- Adapting stream cipher representation to SAT solvers
- Attacks

Conclusions

Mate Soos (INRIA Rhône-Alpes)

• = • • = •

Stream ciphers in RFIDs

Motivations

- We have seen that ad-hoc protocols are notoriously un-robust
- Stream ciphers could be adapted to RFIDs eSTREAM project
- Analysis of hardware-oriented stream ciphers is possible with SAT solvers

Contributions

- Adapt the SAT solver to the environment of cryptography
- Adapt the stream cipher's representation to SAT solvers
- Solve a number of ciphers

- 4 同 5 - 4 回 5 - - - 回

What is a SAT solver

Solves a problem in CNF

CNF is an "and of or-s"

$$\neg x_1 \lor \neg x_3 \qquad \neg x_2 \lor x_3 \qquad x_1 \lor x_2$$

Uses $\mathsf{DPLL}(\varphi)$ algorithm

- $\textbf{0} \ \ \text{If formula} \ \ \varphi \ \text{is trivial, return SAT/UNSAT}$
- 2 Picks a variable v to branch on
- $\mathbf{0} v \leftarrow value$
- $\ensuremath{\textcircled{}}\ensuremath{\\}\ensuremath{\textcircled{}}\ensuremath{\\}\ensuremath{}\e$
- if SAT, output SAT
- **i** f UNSAT, $v \leftarrow \text{opposite value}$
- Simplifies formula to φ'' and calls $\mathsf{DPLL}(\varphi'')$
- if SAT, output SAT
- If UNSAT, output UNSAT

Problem with XOR-s

The truth

$$a \oplus b \oplus c$$

must be put into the solver as

$$\begin{array}{ccc} a \lor \overline{b} \lor \overline{c} & (1) & \overline{a} \lor \overline{b} \lor c & (2) \\ a \lor b \lor c & (3) & \overline{a} \lor b \lor \overline{c} & (4) \end{array}$$

So, straightforward conversion takes 2^{n-1} clauses to model an *n*-long XOR

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Solution until now

Example

 $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 \oplus x_9$

Modelled in CNF:

 $egin{aligned}
egin{aligned}
egin{aligned}
egin{aligned}
egin{aligned}
egin{aligned}
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
egin{aligned}
egin{aligned}
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_3 \oplus x_4 \
extsymptotic x_1 \oplus x_2 \oplus x_4 \
extsymptotic x_4 \
extsymptotic x_4 \oplus x_4 \
extsymptotic x_4 \oplus x_4 \
extsymptotic x_4 \
extsymptotic x_4 \oplus x_4 \
extsymptotic x_4 \oplus x_4 \
extsymptotic x_4 \
extsympto$

Problems

- Still very long to model
- Needs extra vars

Mate Soos (INRIA Rhône-Alpes)

3

< 日 > < 同 > < 三 > < 三 >

Solution until now

Example

 $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8 \oplus x_9$

Modelled in CNF:

 $egin{aligned}
egin{aligned}
end{aligned}
end{aligned}$

Problems

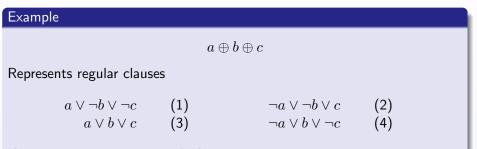
- Still very long to model
- Needs extra vars

Mate Soos (INRIA Rhône-Alpes)

3

< 日 > < 同 > < 三 > < 三 >

Solution to XOR: xor-clause



changes appearance to match the situation

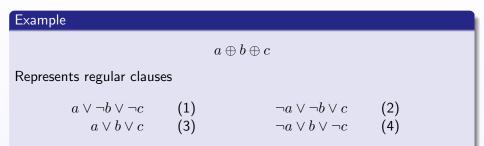
Example set-up

$$a =$$
true $b =$ true $c =$ false $\Rightarrow \neg a \lor \neg b \lor c$

Mate Soos (INRIA Rhône-Alpes)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Solution to XOR: xor-clause



changes appearance to match the situation

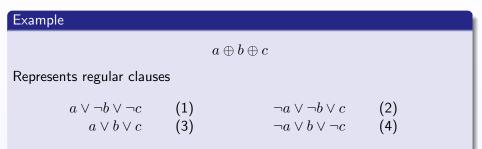
Results

- 2.2x speed
- Order of magnitude savings in memory

Mate Soos	(INRIA Rhône-Alp	es)
-----------	------------------	-----

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Solution to XOR: xor-clause



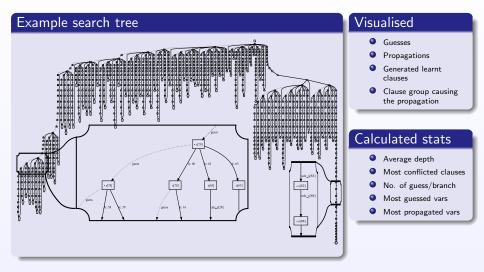
changes appearance to match the situation

Challenges overcome

- MiniSat is complex, we needed to completely understand it
- Design choices were difficult: e.g. we use special memory alloc. to maximise cache-hit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Dynamic behaviour analysis

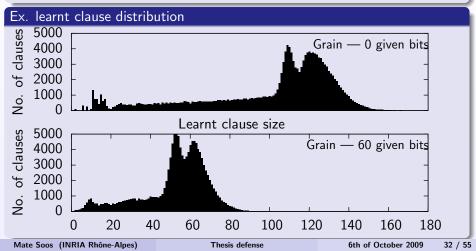


< ロ > < 同 > < 回 > < 回 >

Statistics generated

Further stats

- Learnt clause size distribution
- Branch length distribution



Reasoning • Gaussian elimination is efficient for solving systems of linear equations • xor-clause is a linear equation \rightarrow use Gauss elim. to solve them Implementation A-matrix N-matrix v10v12v8v9aug v10v8v9v12aug $\begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & | & 1 \\ 0 & 1 & 0 & 1 & | & 1 \\ \end{bmatrix}$ $0\\0$ 1 0

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

0

Reasoning

- Gaussian elimination is efficient for solving systems of linear equations
- \bullet xor-clause is a linear equation \rightarrow use Gauss elim. to solve them

Implement	ation									
	with v 8	A-ma 3 assigi	trix ned to	true		1	N-mat	trix		_
v1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 1 1 0 0	$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} v8\\1\\0\\1\\1\end{array}$	$v9 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 0 1 1 1	

・ 同 ト ・ ヨ ト ・ ヨ ト

Reasoning

- Gaussian elimination is efficient for solving systems of linear equations
- \bullet xor-clause is a linear equation \rightarrow use Gauss elim. to solve them

Implementation A-matrix N-matrix with v8 assigned to true v10 v8 v9 v12v10 $v8 \quad v9$ aug v12aug $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & - & 1 & 1 & | & 1 \\ 0 & - & 1 & 1 & | & 1 \\ 0 & - & 0 & 1 & 0 \\ 0 & - & 0 & 0 & | & 0 \end{bmatrix}$ Resulting xor-clause: $v8 \oplus v12$

Reasoning

- Gaussian elimination is efficient for solving systems of linear equations
- \bullet xor-clause is a linear equation \rightarrow use Gauss elim. to solve them

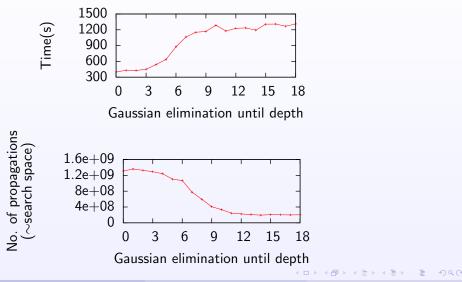
Implementation

witl	-	A-mat assign	trix ed to	true	_		١	N-mat	trix	
$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	v8 	$egin{array}{c} v9 \ 1 \ 1 \ 0 \ 0 \end{array}$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 1 1 0 0		$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} v8 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	v9 1 1 0 0	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 0 1 1 1

Resulting xor-clause:

$$v12 = \texttt{false} \leftarrow v8 \oplus v12$$

Gaussian elimination results



Gaussian elimination results

	No.	Gaussia	Gaussian elimination active until level				
	help bits	Inactive	2	3			
Crypto-1	12	27.0 s	25.8 s <mark>(4%)</mark>	26.5 s(2%)			
HiTag2	18	34.8 s	33.9 s <mark>(3%)</mark>	29.5 s(15%)			
Bivium B	60	174.0 s	165.1 s <mark>(5%)</mark>	171.1 s <mark>(2%)</mark>			

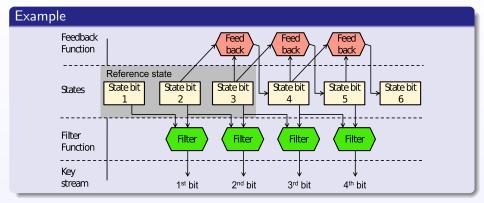
Highlights

- Search space reduced by up to 87%
- Speedup between 0-15%
- A mix of linear and non-linear methods
- \bullet Adds possibility to add other algebraic tools \rightarrow potentially major speedup

3

- 4 同 6 4 日 6 4 日 6

Logical circuit representation



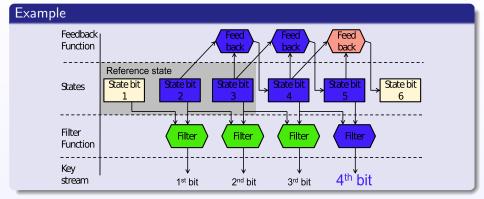
Legend

- Variables \rightarrow boxes
- Functions \rightarrow hexagons

Complexity measures

- Depth of keystream bit
- Dependency no.: state \leftrightarrow keystream
- Difficulty of functions: representation

Logical circuit representation



Legend

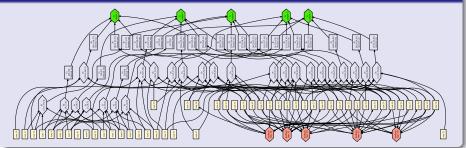
- Variables \rightarrow boxes
- Functions \rightarrow hexagons

Complexity measures

- *Depth* of keystream bit
- Dependency no.: state ↔ keystream
- Difficulty of functions: representation

Dependency graph generator

Example HiTag2 logical circuit



Usage

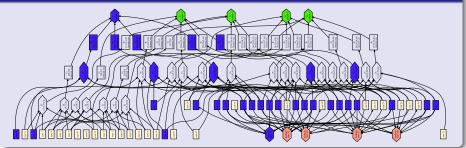
- Calculate mentioned statistics
- Visual clue

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dependency graph generator

Example HiTag2 logical circuit



Usage

- Calculate mentioned statistics
- Visual clue

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Optimising representation of non-linear functions

Example $\mathbb{GF}(2)$ polynomial

 $x_1 + x_1x_2 + x_2x_3 + x_1x_3$

Usual representation

 $x_1 + i_1 + i_2 + i_3$

- No. of clauses: 3×3 regular + 1 xor-clause
- \sum clause length: 31
- 2 extra variables

Karnaugh-table representation

 $\neg x_1 \lor \neg x_3 \quad \neg x_2 \lor x_3 \quad x_1 \lor x_2$

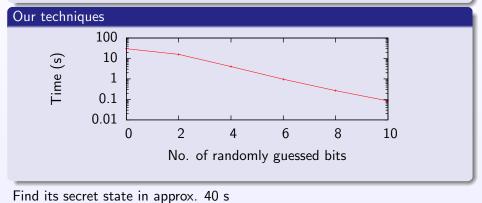
- No. of clauses: 3 regular
- \sum clause length: 6
- No extra variables

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Crypto-1

Background

- Used for micropayment in public transport
- Best SAT solver-based attack : 200 s to solve on avg.
- Best non-SAT solver-based attack: 0.1 s through algebraic attack

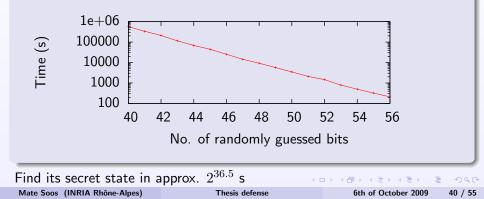


Bivium B

Background

- Simplified version of Trivium eSTREAM candidate
- \bullet Best SAT solver-based attack against it takes $2^{43}\ {\rm s}$
- Non-SAT solver-based attack: $2^{64.5}$ s

Our techniques



Stream ciphers in RFIDs — What we have learnt

- SAT solvers are useful to study hardware-oriented stream ciphers
- Best results are achieved by adapting both solvers to ciphers and cipher's representation to solvers
- Such a system is able to break certain ciphers

Outline

Context

- RFID hardware
- The privacy problem
- Authentication in RFIDs

Ad-hoc protocols

- ProblP
- EProbIP

3 Stream ciphers in RFIDs

- Analysing stream ciphers with SAT solvers
- Adapting SAT solvers to stream ciphers
- Adapting stream cipher representation to SAT solvers
- Attacks

Conclusions

Mate Soos (INRIA Rhône-Alpes)

- 4 同 2 4 回 2 4 回 2 4

Contributions of the Thesis

Contributions

- Created an in-depth state of the art
- Conceived two ad-hoc protocols, ProbIP [1] and EProbIP
- Analysed the Di Pietro-Molva ad-hoc protocol [2]
- Improved SAT solver-based cryptographic attacks [3,4]

References

- Secret Shuffling: A Novel Approach to RFID Private Identification" by CASTELLUCCIA and SOOS, RFIDSec'07
- Analysing the Molva and Di Pietro Private RFID Authentication Scheme" by Soos, RFIDSec'08
- "Solving Low-Complexity Ciphers with Optimized SAT solvers" by NOHL and SOOS, EUROCRYPT'09 (poster)
- "Extending SAT Solvers to Cryptographic Problems" by SOOS, CASTELLUCCIA and NOHL, SAT'09

Conclusions

- RFID hardware is unnatural to optimise for
- Ad-hoc protocols are notoriously fragile, but could be a solution in the long run
- For immediate use, standard crypto-primitives optimised for RFIDs (e.g. HW-oriented stream ciphers) are more suited

Future work

- Post-Doc in the SALSA team of INRIA
- Distributed SAT solving
- Iterative SAT solving
- Mix of SAT solving and algebraic techniques
- RFID-AP ANR project

→ Ξ → < Ξ →</p>

Thank you for your time

3

< 日 > < 同 > < 三 > < 三 >

Mate Soos (INRIA Rhône-Alpes)

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @ >

Di Pietro-Molva scheme

The Di-Pietro Molva scheme works as follows:

1 Tag generates nonces $r_1 \dots r_2$

2 Tag sends
$$lpha_p = r_p \oplus k$$

- Tag sends $V[p] = \mathsf{DPM}(r_p)$
- Reader computes ${\rm DPM}(\alpha_p\oplus k)=V'[p]$ for all k — the one that fits is the tag
- Once tag is identified, authentication takes place

・ロッ ・ 「 ・ ・ ヨ ・ ・ 日 ・ ・ 日 ・

Found shortcomings

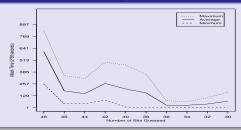
Problems found in the scheme (published as):

- Does not scale finding tag is linear in population size
- Due to func. DPM, there are $2^{2|k|/3}$ key-equivalence classes (i.e. identification is bad)
- $(\alpha_p, V[p])$ pairs do not always contain enough information (pairs are not independent)
- DPM is not secure, each protocol run reveals 1 bit of secret key

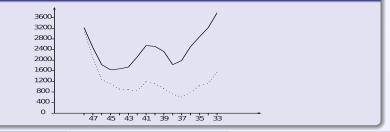
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Research results until now

"Attacking Bivium with MiniSat" by (MCDONALD et al.)



"Attacking Bivium Using SAT Solvers" by (EIBACH et al.)



Mate Soos (INRIA Rhône-Alpes)

Thesis defense

Research results until now

We introduce more randomness

- Reference state bits to assign are picked randomly
- The picked bits are assigned randomly true or false
- Clauses are randomly permutated inside MiniSat
- MiniSat's internal seed (used to randomly explore the search space) is set randomly
- MiniSat's random number generator has been replaced

$\mathsf{LPN}\text{-}\mathsf{based}$

How it works (ex. RANDOM-H	B#)	
Reader \mathcal{R}		Tag \mathcal{T}_i
Secrets X, Y		Secrets X, Y
		$\nu \in_R \{\{0,1\}^m $
	Prob.($(\nu_i = 1) = \eta \text{ for } 1 \le i \le m\}$
		Choose $\mathbf{b} \in_R \{0,1\}^{k_Y}$
Choose $\mathbf{a} \in_R \{a, 1\}^{k_X}$	$\mathbf{b} \longleftarrow$	
$Choose \ a \in_{R} [a, 1]$	$\longrightarrow \mathbf{a}$	
		Let $\mathbf{z} = \mathbf{a} \cdot C \oplus \mathbf{b} \cdot Y \oplus \nu$
	$\mathbf{z} \longleftarrow$	
Check Hwt $(\mathbf{a} \cdot X \oplus \mathbf{b} \cdot Y \oplus \mathbf{z}) \leq um$		

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HB# cont.

Advantages

- Simple to implement: needs XOR, random number generator
- Protocol is well-analysed by its authors

Disadvantages

- Transferred data is large (\rightarrow slow)
- LPN problem quite unresearched, new research is pushing up secure parameter sizes

(人間) とくほう (日) ほう

Example protocol No. 1

Reader \mathcal{R}_j		Tag \mathcal{T}_i
Generate nonce IV ₁		
	$\longrightarrow IV_1$	
		Generate nonce IV_2
		and calculate
		$\sigma = ID \oplus cipher(k, IV_1 \oplus$
	$\leftarrow IV_2, \sigma$	
find $(k, ID) \in L$ s.t.		
$ID = \sigma \oplus cipher(k,$		
$IV_1 \oplus IV_2)$		

Example protocol No. 2

Reader \mathcal{R}_j		Tag \mathcal{T}_i
Generate nonce IV1		
	$\longrightarrow IV_1$	
		Generate nonce IV_2 and
		calculate
		$M = cipher(IV_1, IV_2)$
		$\sigma = ID \oplus cipher(k, M)$
	$\leftarrow - IV_2, \sigma$	
calculate		
$M = cipher(IV_1, IV_2)$		
find $(k, ID) \in L$ s.t.		
$ID = \sigma \oplus cipher(k, M)$		
onti	onal — only for mutual au	thentication
Opti		thentication
calculate		
$\tau = ID \oplus cipher(k, M \oplus 1)$		
	$\longrightarrow \tau$	
		check $ au \stackrel{?}{=} ID \oplus cipher(k, M \oplus 1)$

イロト 不得 トイヨト イヨト … ヨ