
SAT Solving and CDCL(T)

Mate Soos

SAT Winter School’2019

IIT Bombay, India

December 7, 2019

Based on slides by Armin Biere

About Me

PhD at INRIA Grenoble 2009

Maintainer of CryptoMiniSat, STP, ApproxMC

Working as a Senior Research Fellow at National University of Singapore (3mo a year)

Working as a Senior IT Security Architect at Zalando (9mo a year)

Interests: Higher level abstractions, Counting, Inprocessing, ML, Visualisation

Dress Code Tutorial Speaker as SAT Problem

propositional logic:

variables jewellery shirt

negation ¬ (not)

disjunction ∨ (or)

conjunction ∧ (and)

clauses (conditions / constraints)

1. clearly one should not wear a jewellery without a shirt ¬jewellery∨shirt

2. not wearing a jewellery nor a shirt is impolite jewellery∨shirt

3. wearing a jewellery and a shirt is overkill ¬(jewellery∧shirt) ≡ ¬jewellery∨¬shirt

Is this formula in conjunctive normal form (CNF) satisfiable?

(¬jewellery∨shirt) ∧ (jewellery∨shirt) ∧ (¬jewellery∨¬shirt)

What is Practical SAT Solving?

simplifying

encoding

inprocessing

search

reencoding

Equivalence Checking If-Then-Else Chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Tseitin Transformation: Circuit to CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x → a)∧ (x → c)∧
(x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .

Tseitin Transformation: Gate Constraints

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Tseitin Encoding of If-Then-Else Gate

t

x

1

0e

c

x↔ (c ? t : e) ⇔ (x→ (c→ t)) ∧ (x→ (c̄→ e)) ∧ (x̄→ (c→ t̄)) ∧ (x̄→ (c̄→ ē))

⇔ (x̄∨ c̄∨ t) ∧ (x̄∨ c∨ e) ∧ (x∨ c̄∨ t̄) ∧ (x∨ c∨ ē)

minimal but not arc consistent:

if t and e have the same value then x needs to have that too

possible additional clauses

(t̄ ∧ ē→ x̄) ≡ (t ∨ e∨ x̄) (t ∧ e→ x) ≡ (t̄ ∨ ē∨ x)

but can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice

Example of Logical Constraints: XOR Constraints

2-long XOR: l1⊕ l2 = 1 ⇔ l1∨ l2∧
l1∨ l2∧

3-long XOR: l1⊕ l2⊕ l3 = 1 ⇔ l1∨ l2∨ l3∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧

4-long XOR: l1⊕ l2⊕ l3⊕ l4 = 1 ⇔ l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧
l1∨ l2∨ l3∨ l4∧

In general, a k-long XOR constraint translates to 2k−1 clauses without helper variables

Example of Logical Constraints: XOR Constraints Cont.

We use helper variables to bring down the 2k−1 clauses needed:

l1⊕ l2⊕ l3⊕ l4⊕ l5⊕ l6⊕ l7 = 1 ⇔ l1⊕ l2⊕ l3⊕h1∧
h1⊕ l4⊕ l5⊕h2∧
h3⊕ l6⊕ l7

Now we have:

bk−1/2c helper variables

b(k−1)/2c+ dk/2e XORs, each at most 4 long

→ the number of clauses needed is linear in k

Different trade-offs are possible, this is called the “cutting number”.

Example of Logical Constraints: Cardinality Constraints

given a set of literals {l1, . . . ln}
constraint the number of literals assigned to true

l1+ · · ·+ ln ≥ k or l1+ · · ·+ ln ≤ k or l1+ · · ·+ ln = k

combined make up exactly all fully symmetric boolean functions

multiple encodings of cardinality constraints

naive encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

many variants even for at-most-one constraints

for an O(n · logn) encoding see Prestwich’s chapter in Handbook of SAT

typically arc consistency is expensive in terms of encoding

DIMACS Format

$ cat example.cnf

c comments start with ’c’ and extend until the end of the line

c

c variables are encoded as integers:

c

c ’jewellery’ becomes ’1’

c ’shirt’ becomes ’2’

c

c header ’p cnf <variables> <clauses>’

c

p cnf 2 3

-1 2 0 c !jewellery or shirt

1 2 0 c jewellery or shirt

-1 -2 0 c !jewellery or !shirt

$ picosat example.cnf

s SATISFIABLE

v -1 2 0

SAT Application Programmatic Interface (API)

incremental usage of SAT solvers

add facts such as clauses incrementally

call SAT solver and get satisfying assignments

optionally retract facts

retracting facts

remove clauses explicitly: complex to implement

push / pop: stack like activation, no sharing of learned facts

MiniSAT assumptions [EénSörensson’03]

assumptions

unit assumptions: assumed for the next SAT call

easy to implement: force SAT solver to decide on assumptions first

shares learned clauses across SAT calls

IPASIR: Reentrant Incremental SAT API

used in the SAT competition / race since 2015 [BalyoBiereIserSinz’16]

IPASIR Model

IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);

void ipasir_assume (void * solver, int lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int lit);

int ipasir_failed (void * solver, int lit);

void ipasir_set_terminate (void * solver, void * state,

 int (*terminate)(void * state));

#include "ipasir.h"

#include <assert.h>

#include <stdio.h>

#define ADD(LIT) ipasir_add (solver, LIT)

#define PRINT(LIT) \

 printf (ipasir_val (solver, LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {

 void * solver = ipasir_init ();

 enum { tie = 1, shirt = 2 };

 ADD (-tie); ADD (shirt); ADD (0);

 ADD (tie); ADD (shirt); ADD (0);

 ADD (-tie); ADD (-shirt); ADD (0);

 int res = ipasir_solve (solver);

 assert (res == 10);

 printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");

 printf ("assuming now: tie shirt\n");

 ipasir_assume (solver, tie); ipasir_assume (solver, shirt);

 res = ipasir_solve (solver);

 assert (res == 20);

 printf ("unsatisfiable, failed:");

 if (ipasir_failed (solver, tie)) printf (" tie");

 if (ipasir_failed (solver, shirt)) printf (" shirt");

 printf ("\n");

 ipasir_release (solver);

 return res;

}

DP / DPLL

dates back to the 50’ies:

1st version DP is resolution based

2nd version D(P)LL splits space for time

ideas:

1st version: eliminate the two cases of assigning a variable in space or

2nd version: case analysis in time, e.g. try x = 0,1 in turn and recurse

most successful SAT solvers are based on variant (CDCL) of the second version

recent (≤ 25 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at some of these)

DP Procedure

forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

Bounded Variable Elimination
[EénBiere-SAT’05]

Replace
(x̄∨a)1 (x̄∨ c)4
(x̄∨b)2 (x∨d)5

(x∨ ā∨ b̄)3

by
(a∨ ā∨ b̄)13 (a∨d)15 (c∨d)45
(b∨ ā∨ b̄)23 (b∨d)25
(c∨ ā∨ b̄)34

number of clauses not increasing

strengthen and remove subsumbed clauses too

most important and most effective preprocessing we have

Bounded Variable Addition
[MantheyHeuleBiere-HVC’12]

Replace
(a∨d) (a∨ e)
(b∨d) (b∨ e)
(c∨d) (c∨ e)

by (x̄∨a) (x̄∨b) (x̄∨ c)
(x∨d) (x∨ e)

number of clauses has to decrease strictly

reencodes for instance naive at-most-one constraint encodings

D(P)LL Procedure

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

DPLL Example

a

clauses

v b v ca

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

b

c

c

c b b

a

b c

b =

a =

c =

1

0

1 BCP

decision

decision

Lookahead solvers are based on this with:

smart heuristics to pick variable to branch on

processing of instance after every branch

Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

first implemented in the context of GRASP SAT solver

name given later to distinguish it from DPLL

not recursive anymore

essential for SMT

learning clauses as no-goods

notion of implication graph

(first) unique implication points

Conflict Driven Clause Learning (CDCL)

c

a v b

a v blearn

a

b

b =

a =

c =

1

0

1 BCP

decision

decision

clauses

v b v ca

a v b v c

a v b v c

v c

a v b v c

a v b v c

a v b v c

a v b v c

Conflict Driven Clause Learning (CDCL)

a v b

b
c

b

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

a v b v c

v b

0

BCP

BCP

decision a

learn

Conflict Driven Clause Learning (CDCL)

a v b

b

a

a

c

b

a

a v b v c

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

BCP

decision

BCP

clearn

Conflict Driven Clause Learning (CDCL)

a v b

b

a

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

a BCP

BCP

c

c BCP

b

a v b v c

learn

empty clause

Implication Graph

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

Conflict

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

Backjumping

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.

Decision Heuristics

number of variable occurrences in (remaining unsatisfied) clauses (LIS)

eagerly satisfy many clauses with many variations studied in the 90ies

actually expensive to compute

dynamic heuristics

focus on variables which were useful recently in deriving learned clauses

can be interpreted as reinforcement learning

started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]

most solvers rely on the exponential variant in MiniSAT (EVSIDS)

recently showed VMTF as effective as VSIDS [BiereFröhlich-SAT’15] survey

look-ahead

spent more time in selecting good variables (and simplification)

related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]

“The Science of Brute Force” [Heule & Kullman CACM August 2017]

EVSIDS during stabilization VMTF otherwise [Biere-SAT-Race-2019]

Exponential VSIDS (EVSIDS)

Chaff [MoskewiczMadiganZhaoZhangMalik’01]

increment score of involved variables by 1

decay score of all variables every 256’th conflict by halfing the score

sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS [EénSörensson’03]

update score of involved variables as actually LIS would also do

dynamically adjust increment: δ′ = δ · 1f typically increment δ by 5%

use floating point representation of score

“rescore” to avoid overflow in regular intervals

EVSIDS linearly related to NVSIDS

Basic CDCL Loop

int basic_cdcl_loop () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else decide (); // otherwise pick next decision

 return res;

}

Reducing Learned Clauses

keeping all learned clauses slows down BCP kind of quadratically

so SATO and RelSAT just kept only “short” clauses

better periodically delete “useless” learned clauses

keep a certain number of learned clauses “search cache”

if this number is reached MiniSAT reduces (deletes) half of the clauses

then maximum number kept learned clauses is increased geometrically

LBD (glucose level / glue) prediction for usefulness [AudemardSimon-IJCAI’09]

LBD = number of decision-levels in the learned clause

allows arithmetic increase of number of kept learned clauses

keep clauses with small LBD forever (≤ 2 . . .5)

three Tier system by [Chanseok Oh]

recent work on machine-learning heuristic based on labelled proof data [SoosKulkarniMeel2019]

Restarts

often it is a good strategy to abandon what you do and restart

for satisfiable instances the solver may get stuck in the unsatisfiable part

for unsatisfiable instances focusing on one part might miss short proofs

restart after the number of conflicts reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses during restart

for completeness dynamically increase restart limit

arithmetically, geometrically, Luby, Inner/Outer

Glucose restarts [AudemardSimon-CP’12]

short vs. large window exponential moving average (EMA) over LBD

if recent LBD values are larger than long time average then restart

interleave “stabilizing” (no restarts) and “non-stabilizing” phases [Chanseok Oh]

Luby’s Restart Intervals
70 restarts in 104448 conflicts

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Phase Saving and Rapid Restarts

phase assignment:

assign decision variable to 0 or 1?

lucky guess can lead to immediate solution to a satisfiable instance

“phase saving” as in RSat [PipatsrisawatDarwiche’07]

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

so can be seen to maintain a global full assignment

rapid restarts

varying restart interval with bursts of restarts

not only theoretically avoids local minima

works nicely together with phase saving

reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT’11]

target phases of largest conflict free trail / assignment [Biere-SAT-Race-2019]

CDCL Loop with Reduce and Restart

int basic_cdcl_loop_with_reduce_and_restart () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else if (restarting ()) restart (); // restart by backtracking

 else if (reducing ()) reduce (); // collect useless learned clauses

 else decide (); // otherwise pick next decision

 return res;

}

Code from the SAT Solver CaDiCaL by Armin Biere

int Internal::cdcl_loop_with_inprocessing () {

 int res = 0;

 while (!res) {

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // propagate and analyze

 else if (iterating) iterate (); // report learned unit

 else if (satisfied ()) res = 10; // found model

 else if (terminating ()) break; // limit hit or async abort

 else if (restarting ()) restart (); // restart by backtracking

 else if (rephasing ()) rephase (); // reset variable phases

 else if (reducing ()) reduce (); // collect useless clauses

 else if (probing ()) probe (); // failed literal probing

 else if (subsuming ()) subsume (); // subsumption algorithm

 else if (eliminating ()) elim (); // variable elimination

 else if (compacting ()) compact (); // collect variables

 else if (conditioning ()) condition (); // globally blocked clauses

 else res = decide (); // next decision

 }

 return res;

}

https://github.com/arminbiere/cadical

https://fmv.jku.at/cadical

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical

Two-Watched Literal Schemes

original idea from SATO [ZhangStickel’00]

invariant: always watch two non-false literals

if a watched literal becomes false replace it

if no replacement can be found clause is either unit or empty

original version used head and tail pointers on Tries

improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]

watch pointers can move arbitrarily SATO: head forward, tail backward

no update needed during backtracking

one watch is enough to ensure correctness but looses arc consistency

reduces visiting clauses by 10x

particularly useful for large and many learned clauses

blocking literals [ChuHarwoodStuckey’09]

special treatment of short clauses (binary [PilarskiHu’02] or ternary [Ryan’04])

cache start of search for replacement [Gent-JAIR’13]

Parallel SAT

Application level parallelism

Guiding path principle

Portfolio (with or without sharing)

Concurrent cube & conquer

Proofs

SAT solvers are search-directed proof systems.
They only incidentally find satisfying assignments.

When and why are they important?

If solution is UNSAT then proofs are super-important

Determines minimum number of resolutions

SAT solver cannot finish in less than that many steps

If it’s exponential in input size, we are in a mess /

If solution is SAT then maybe not so important?

Observe: pruning solution space is done through resolvents

We are building a proof that certain parts of the search space are devoid of solutions

Experimentally easy to validate: give XOR matrix with a solution to a SAT solver

Hence, the proof we are generating is very important.

Proofs: Example proof

Say we want to prove that the following set of clauses is UNSAT:

a∨b∨ z ∧ c∨d∨ z ∧
a∨b∨ z ∧ c∨d∨ z ∧
a∨b∨ z ∧ c∨d∨ z ∧
a∨b∨ z ∧ c∨d∨ z

a∨b∨ z
�

a∨b∨ z

a∨b∨ z
�

a∨b∨ z

↔

a∨ z

�

a∨ z

↔ z

Observe: we could
have used b∨ z and b∨
z, too!

Proofs: Example proof cont.

a V b V z a V b V z

a V z

z

a V b V z a V b V z

a V z

c V d V z c V d V z

c V z

z

c V d V z c V d V z

c V z

⊥

Homework: how many different resolution trees are there for deriving ⊥ here?
(How many ways to derive z? And z?)

Proofs: Some observations

In general there are many different proofs

Proof forms a DAG

Proof is acyclic but not necessarily tree-like

Different proofs can be very different in size

Input set of clauses to the proof called the “core” of the CNF

Often many different cores, too (like above)

Cores are useful: For example, can tell us why we cannot schedule a tournament

we must relax some of the constraints indicated by the core clauses

but there might be more than one core, so may need to relax more than one!

Pigeonhole principle [Hak85] formulas’ proofs are lower bound exponential in size /

We can (and should) explore stronger reasoning methods

One way is to do CDCL(T), where T are the new theories

RUP / DRUP

original idea for proofs: proof traces / sequence consisting of “learned clauses”

can be checked clause by clause through unit propagation

reverse unit implied clauses (RUP) [GoldbergNovikov’03] [VanGelder’12]

deletion information (DRUP): trace of added and deleted clauses [HeuleHuntWetzler-FMCAD’13/STVR’14]

RUP in SAT competition 2007, 2009, 2011, DRUP since 2013 to certify UNSAT

Blocked Clauses
[Kullman-DAM’99] [JärvisaloHeuleBiere-JAR’12]

clause

C︷ ︸︸ ︷
(a∨ l) “blocked” on l w.r.t. CNF

F︷ ︸︸ ︷
(ā∨b)∧ (l∨ c)∧ (l̄∨ ā)︸ ︷︷ ︸

D
all resolvents of C on l with clauses D in F are tautological

blocked clauses are “redundant” too

adding or removing blocked clauses does not change satisfiability status

however it might change the set of models

Resolution Asymmetric Tautologies (RAT)

“Inprocessing Rules” [JärvisaloHeuleBiere-IJCAR’12]

justify complex preprocessing algorithms in Lingeling

examples are adding blocked clauses or variable elimination

interleaved with research (forgetting learned clauses = reduce)

need more general notion of redundancy criteria

simply replace “resolvents are tautological” by “resolvents on l are RUP”

(a∨ l) RAT on l w.r.t. (ā∨b)∧ (l∨ c)∧ (l̄∨b)︸ ︷︷ ︸
D

deletion information is again essential (DRAT) [HeuleHuntWetzler-FMCAD’13/STVR’14]

now mandatory in the main track of the SAT competitions since 2013

pretty powerful: can for instance also cover symmetry breaking

Gauss-Jordan Elimination

Gaussian part, getting upper-triangular matrix:
1 1 0 1 1
1 0 0 1 0
1 0 1 1 0
0 1 0 1 1

 →


1 1 0 1 1
0 1 0 0 1
0 1 1 0 1
0 1 0 1 1

 →


1 1 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 1 1 0

 →


1 1 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


Jordan part, getting row-echelon form:

1 1 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 →


1 1 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 →


1 1 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 →


1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


The naive implementation above is O(n3) steps

More sophisticated versions take around O(n2.8) steps

If resolution operator is all we have, shortest proof is exponential in n

CDCL(T)

For theories that are not efficiently simulated by CDCL

T is the theory, e.g.:

Gauss-Jordan Elimination [SoosNohlCastelluccia’2010]

Pseudo-Boolean Reasoning [ChaiKuehlmann’2006]

Symmetric Explanation Learning [DevriendtBogaertsBruynooghe’2017]

Theory is run side-by-side to the CDCL algorithm

Propagate values implied by Theory given current assignment stack of CDCL

Conflict if Theory implies 1=0 given current assignment stack of CDCL

Theory must give reason for propagations&conflicts

CDCL Theory

Current assignment stack
Current set of conflict clauses

New propagations
New conflicts

CDCL(T) Cont.

Optimizations:

Should only send delta of assignment stack + conflict clauses

Variables assigned (decisions + propagations)

Variables unassigned (backtracking, restarting)

New conflict clauses

Theory only needs to compute delta relative to old state

Theory can give placeholders for reasons

If reason is needed during conflict generation, Theory is queried

Called “lazy” (vs “greedy”) interpolant generation

CDCL Theory
Solver

Delta assignment stack
Delta conflict clauses

New propagations
New conflicts

Reason placeholders
Theory StateUpdate state

Reason queries
and answers

CDCL(T) Gauss-Jordan Elimination: Ingredients

What components do we need?

Extractor for XOR constraints: XORs may be encoded as CNF

Disjoint matrix detection: disjoint matrices should be handled separately

Delta update mechanism for row-echelon form matrix:

how to handle when variable is set

how to handle when variable is unset

Efficient data structures to allow for quick updates

Reason generation

CDCL(T) Gauss-Jordan Elimination: Extraction

l1⊕ l2⊕ l3 = 1 ⇔ l1∨ l2∨ l3∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧

l1⊕ l2⊕ l3 = 1 ← l1∨ l2∨∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧
l1∨ l2∨ l3∧

Missing literals only mean something stronger than XOR

XOR is still implied and should be detected

CDCL(T) Gauss-Jordan Elimination: Extraction

Algorithm 1 ComputeBloom
1: abst← 0
2: for var in clause do
3: abst← abst | (1 << (var % 32))

4: return abst

Algorithm 2 Barbet(clauses, M)
1: xorclauses← /0

2: for base cl ∈ clauses do
3: if base cl.size > M then continue
4: if base cl.used == 1 then continue
5: FIND ONE XOR(base cl)

return xorclauses

CDCL(T) Gauss-Jordan Elimination: Extraction

1: function FindOneXOR(base cl)
2: quickcheck← array of zeroes
3: found comb← array of zeroes
4: comb← 0
5: base rhs← 1 . right-hand-side of the XOR
6: for i← 0 . . . base cl size-1 do
7: base rhs← base rhs ⊕ base cl[i].sign
8: comb← comb | (base cl[i].sign << i)
9: quickcheck[base cl[i].var]← 1

10: base abst← CALC ABST(base cl)
11: found comb[comb]← 1
12: for v ∈ Vars(base cl) do
13: for abst, cl ∈ occurrence[v] do
14: if CheckClause(abst, cl, base cl, base abst) then return

CDCL(T) Gauss-Jordan Elimination: Matrix Separation

1: function FINDMATRIXES(xors)
2: matrixnum← 0, var-to-matrix← -1, matrix-to-vars← empty
3: for xor ∈ xors do
4: xor-belongs← -1
5: for var ∈ xor do
6: if var-to-matrix[var] != -1 then
7: if xor-belongs == -1 then xor-belongs = var-to-matrix[var]
8: else if xor-belongs != var-to-matrix[var] then
9: Move all variables from var-to-matrix[var] to xor-belongs

10: if xor-belongs == -1 then
11: xor-belongs← matrixnum++

12: for var ∈ xor do
13: var-to-matrix[var] = xor-belongs

0

0 A

B

+
A

B

CDCL(T) Gauss-Jordan Elimination: None of that row swapping please!

Observations:

We are using binary matrixes (1/0), so bit-packed format is best

Packed format: row-swapping becomes expensive – it’s a copy

Row-echelon form is nice for the eyes [HanJiang2012]:

But we only need a row to be responsible for a column’s “1”

What we loose: have to check all rows, not only ones below

So, any row can be responsible for being a column’s “1”


0 0 0 1 1 1 0 1 1
1 1 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0



CDCL(T) Gauss-Jordan Elimination: 2-variable watchlist scheme

Let’s use a 2-variable watch scheme [HanJiang2012]:

If 2 or more variables are unset in XOR constraint, it cannot propagate or conflict

If 1 variable is unset, it must propagate

If 0 variable is unset, it is either satisfied or is in conflict

We’ll use the Simplex Method’s terminology:

Let’s call the column that the row is responsible for “basic”

Let’s call the column that the row is NOT responsible for “nonbasic”

What data structures do we need for this? Let’s see:

Watchlist for variables (not literals!)

column-has-responsible-row[column] = 1/0

row-to-nonbasic-column[row] = column

CDCL(T) Gauss-Jordan Elimination: Propagation

A rough outline:

Observe that the matrix is usually underdetermined: more columns than rows

Many unset columns will have no responsible rows

If we set a variable, its column doesn’t need a responsible row

The more variables we decide on, the more the matrix will be determined


0 0 0 1 1 1 0 1 1
1 1 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0

 Let’s set the first column to “1”→


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1



we get a propagation! →


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1


Notice: we were were watching
both of this row’s variables where
it has a “1”. It’s a 2-variable watch
scheme!

CDCL(T) Gauss-Jordan Elimination: Propagation

We got a propagation
from last slide:


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1

 Variable is now set by
Gauss-Jordan→


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1



Variable is decided on
→


0 0 0 1 1 1 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1


Need new responsible

variable
→


0 0 0 1 1 1 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1



Must adjust matrix
→


0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1

 New propagation
→


0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


And the story goes on...

CDCL(T) Gauss-Jordan Elimination: Reason Clauses

What combination of XOR constraints gave us the propagation?

The above set of matrixes cannot give us the reason clause

Easy solution: the “green” columns are actually not zeroed out

When looking for propagations/conflicts, we check if columns’ variable is set. If yes, we pretend it’s a 0

When looking for reasons, we use the actual values

All the row-XOR operations happen as before

Hence:

Each row is a combination of input XOR constraints

It is guaranteed to propagate/conflict under current variable assignment

When a variable is set, we are just wearing “green glasses”

CDCL(T) Gauss-Jordan Elimination: Backtracking

If we don’t zero out the columns, we get a free bonus! If we need to unset an assignment due to backtracking, we
pretend we never set it (remove “green glasses”):

All previous invariants still hold

If the column had a responsible row, it still has it

Both watches of the row are still good and in the watchlists

Matrix looks differently than when we last had this assignment... is that a problem?

No! Observe: new matrix could have been reached from the starting position, pivoting differently(!)

CDCL(T) Gauss-Jordan Elimination: Recap

Let’s recap! What was hard:

Extracting XOR constraints

Keeping CDCL and GJ in sync:

Fast update for variable setting (propagation)

Fast update for backtracking (conflict)

Reason clause generation

Symmetries: teaser

Let’s put 10 birds into 10 holes, 1 bird per hole: pigeonhole principle

Let’s schedule 10 teams to 5 stadiums over 200 days

Symmetries are often non-trivially encoded into the CNF

Sometimes, encoding them differently can get rid of them, but sometimes it’s hard

Symmetries: preliminaries

For a given formula ϕ, an assignment of the variables of ϕ is a function α : V →{1,0}

Permutation is a bijection from a set to itself

Cycle notation of a permutation: (abc)(de) maps a to b, b to c, c to a, swaps d with e, and maps all other
elements to themselves

Permutations form algebraic groups under the composition relation (�)

Group of permutations of V (i.e. bijections from V to V) is noted G(V)

Group G(V) acts on the set of literals. For g ∈G(V) and a literal l ∈ L
g.l = g(l) if l is a positive literal

g.l = g(l) if l is a negative literal

Group G(V) also acts on (partial) assignments of V : for g ∈G(V),α ∈ Ass(V),g.α = {g.l|l ∈ α}

Let ϕ be a formula, and g ∈G(V). We say that g ∈G(V) is a symmetry of ϕ if for every complete assignment
α,α |= ϕ if and only if g.α |= ϕ

Symmetries: Example permutation

All of this did not click until I found the work of Devriend, Bogaerts, Bruynooghe and Denecker, BreakID:

$ cat mycnf.cnf

p cnf 4 4

1 2 3 0

1 -2 3 0

-1 4 0

-3 4 0

$./breakid mycnf.cnf

*** Detecting symmetry group...

-- Permutations:

(2 -2)

(1 3) (-1 -3) [<-- "cycle notation"]

Makes sense:

If we substitute 1 with 3 everywhere and vica versa, it’s the same!

If we substitute 2 with -2 everywhere and vica versa, it’s the same!

Symmetries: examples

$ cat c.cnf

p cnf 6 7

1 -2 3 0

1 2 3 0

-1 4 0

-3 4 0

c ---------------

5 -2 6 0

5 4 0

6 4 0

$./breakid mycnf.cnf

*** Detecting symmetry group...

-- Permutations:

(1 3) (-1 -3)

(5 6) (-5 -6)

Makes sense:

I can no longer substitute 2 for -2 and vica-versa, it won’t be the same CNF

Any combination of 1↔ 3 and 5↔ 6 works. Hence these permutations can be combined.

Symmetries: obtaining them

Let’s create an undirected, vertex-coloured graph:

Each literal is a vertex, colour green

Each clause is a vertex, colour red

Each literal is connected to its inverse

Each clause’s vertex is connected to the literals’ vertices inside it

The automorphism groups of this graph are the symmetry groups of the CNF

CNF
Undirected,

vertex-coloured
graph

Graph Automorphism
Group Finding

(e.g. Bliss, Saucy)

Theory
SolverCDCL

Symmetries: the graph

$ cat c.cnf

p cnf 6 4

2 6 0

1 -2 3 0

1 4 0

3 5 0

$./breakid mycnf.cnf

-- Permutations:

(1 3) (-1 -3) (4 5) (-4 -5)

1 -1

2

-2

3 -3

4 -4

5 -5

6 -6

2 v 6

1 v -2 v 3

1 v 4

3 v 5

3 -3

2

-2

1 -1

5 -5

4 -4

6 -6

2 v 6

3 v -2 v 1

3 v 5

1 v 4

Nothing much happening here

Symmetries: the graph, example 2

$ cat d.cnf

p cnf 6 4

2 6 0

1 -2 -3 0

1 4 0

-3 5 0

$./breakid mycnf.cnf

-- Permutations:

(1 -3) (-1 3) (4 5) (-4 -5)

1 -1

2

-2

3 -3

4 -4

5 -5

6 -6

2 v 6

1 v -2 v -3

1 v 4

-3 v 5

-3 3

2

-2

-1 1

5 -5

4 -4

6 -6

2 v 6

-3 v -2 v 1

-3 v 5

1 v 4

Nothing much happening here

Symmetries: solutions

$./breakid mycnf.cnf

*** Detecting symmetry group...

-- Permutations:

(1 3) (-1 -3)

(5 6) (-5 -6)

OK, so how about the solutions?

If a solution has v1 = 1,v3 = 0 we obviously have another solution: v1 = 0,v3 = 1

If a solution has v5 = 1,v6 = 0 we obviously have another solution: v5 = 0,v6 = 1

But do we always have 4x more solutions?

NO! How about when the only solution has v1 = 0,v3 = 0?

Symmetries: solutions, example 2

$./breakid mycnf.cnf

-- Permutations:

(1 3) (-1 -3) (4 5) (-4 -5)

OK, so how about the solutions?

If a solution has v1 = 1,v3 = 0 we obviously have another solution: v1 = 0,v3 = 1

If a solution has v1 = 0,v3 = 0,v4 = 1,v5 = 0 we still have another solution: v1 = 0,v3 = 0,v4 = 0,v5 = 1

But if a solution has v1 = 0,v3 = 0,v4 = 0,v5 = 0→ we can’t do anything

Similarly if a solution has v1 = 1,v3 = 1,v4 = 1,v5 = 1→ we can’t do anything

Symmetries: breaking them

$ cat c.cnf

p cnf 6 4

2 6 0

1 -2 3 0

1 4 0

3 5 0

$./breakid mycnf.cnf

-- Permutations:

(1 3) (-1 -3) (4 5) (-4 -5)

Let’s observe the following:
If we make sure that v4 ≥ v5 then we eliminate some of the symmetry
But that doesn’t eliminate the symmetry where v4 = v5
For that, we need another constraint: v4 = v5→ v1 ≥ v3
The above two eliminate solutions where:

v4 = 0,v5 = 1
v4 = 0,v5 = 0,v1 = 1,v3 = 0
v4 = 1,v5 = 1,v1 = 1,v3 = 0

These correspond to clauses:
v4∨ v5
v7↔ v4∨ v5
v7→ v1∨ v3

Note that v7 is an indicator variable. It is true when:
v4 = 0,v5 = 0
v4 = 1,v5 = 1
v4 = 0,v5 = 1 But this never occurs! (remember: v4 ≥ v5)
Hence, it’s only true when v4 = v5

Is this symmetry breaking complete?

Symmetries: breaking them

$ cat c.cnf

p cnf 6 4

2 6 0

1 -2 3 0

1 4 0

3 5 0

$./breakid c.cnf -b --only-b

-- Permutations:

(1 3) (-1 -3) (4 5) (-4 -5)

c breaking clauses: 4

c aux vars: 1

-5 4 0

-7 -1 3 0

-7 -4 5 0

7 4 0

7 -5 0

Let’s observe the following:
If we make sure that v4 ≥ v5 then we eliminate some of the symmetry
But that doesn’t eliminate the symmetry where v4 = v5
For that, we need another constraint: v4 = v5→ v1 ≥ v3
The above two eliminate solutions where:

v4 = 0,v5 = 1
v4 = 0,v5 = 0,v1 = 1,v3 = 0
v4 = 1,v5 = 1,v1 = 1,v3 = 0

These correspond to clauses:
v4∨ v5
v7↔ v4∨ v5
v7→ v1∨ v3

Note that v7 is an indicator variable. It is true when:
v4 = 0,v5 = 0
v4 = 1,v5 = 1
v4 = 0,v5 = 1 But this never occurs! (remember: v4 ≥ v5)
Hence, it’s only true when v4 = v5

Is this symmetry breaking complete?

Symmetries: CDCL(T)

CDCL(T) systems for symmetries:

“Static” handling through symmetry breaking clauses

Shatter [AloulRamanMiarkovSakallah2003]

BreakID [DevriendtBogaertsBruynoogheDenecker2016]

“Dynamic” handling through dynamic symmetry breaking clauses, propagations, and conflicts:

Symmetric explanation learning [DevriendtBogaertsBruynooghe2017]

Symmetry status tracking [MetinBaarirColangeKordon2018]

Symmetries: CDCL(T) static breaking

If G(V is a symmetry group, then a symmetry breaking formula ψ is sound if for each assignment α there exists at
least one symmetry g ∈G(V) such that g.α satisfies ψ. ψ is complete if for each assignment α there exists at most
one symmetry g ∈G(V) such that g.α satisfies ψ [Walsh2012].

It’s easy to make a sound symmetry breaking formula

It’s hard to make it compact and complete

Biggest issue is size:

Adding lots of clauses makes the SAT solver slow

Adding lots of variables can make the SAT solver loose track of the real problem (VSIDS may go off the rails)

Solutions:

Only add clauses up to a certain size

Only add a maximum N number of clauses or literals

Detect symmetries that are cheap to break and can be broken completely

Symmetries: CDCL(T) dynamic breaking

Different ways:

Add symmetric learnt clauses (“Symmetric Learning”) [BenhamouNabhaniOstrowskiSaidi2010]

Keep only active symmetry blocking clauses (“Symmetric Explanation Learning”) [DevriendtBogaertsBruynooghe2017]

Don’t branch into search space that are symmetric (“SymChaff”) [Sabharwal2009]

Any ideas in the audience?

