SAT Solving and CDCL(T)

Mate Soos
SAT Winter School'2019
IIT Bombay, India

December 7, 2019

Based on slides by Armin Biere

About Me

- PhD at INRIA Grenoble 2009
- Maintainer of CryptoMiniSat, STP, ApproxMC
- Working as a Senior Research Fellow at National University of Singapore (3mo a year)
- Working as a Senior IT Security Architect at Zalando (9mo a year)
- Interests: Higher level abstractions, Counting, Inprocessing, ML, Visualisation

Dress Code Tutorial Speaker as SAT Problem

- propositional logic:
- variables jewellery shirt
- negation \quad (not)
- disjunction \vee (or)
- conjunction $\wedge \quad$ (and)
- clauses (conditions / constraints)

1. clearly one should not wear a jewellery without a shirt
\neg jewellery \vee shirt jewellery \vee shirt
2. wearing a jewellery and a shirt is overkill $\quad \neg$ (jewellery \wedge shirt $) \equiv \neg$ jewellery $\vee \neg$ shirt

- Is this formula in conjunctive normal form (CNF) satisfiable?
$(\neg$ jewellery \vee shirt $) \wedge($ jewellery \vee shirt $) \wedge(\neg$ jewellery $\vee \neg$ shirt $)$

What is Practical SAT Solving?

Equivalence Checking If-Then-Else Chains
original C code
\Downarrow
if(!a)
\quad if(! b) h(); $\quad \Rightarrow$
else g();
\} else f();
optimized C code

```
if(!a && !b) h();
```

if(!a \&\& !b) h();

```
if(!a && !b) h();
else if(!a) g();
else if(!a) g();
else if(!a) g();
else f();
```

else f();

```
else f();
```

if(a) f();
else if(b) g();
else h();
\Downarrow
if(!a) $\{$
if(! b) h();
elseg();
\}else f();
\Uparrow
if(a) f();
else \{
if(!b) h(); else g(); \}

How to check that these two versions are equivalent?

Tseitin Transformation: Circuit to CNF

$$
\begin{aligned}
& o \wedge \\
& (x \leftrightarrow a \wedge c) \wedge \\
& (y \leftrightarrow b \vee x) \wedge \\
& (u \leftrightarrow a \vee b) \wedge \\
& (v \leftrightarrow b \vee c) \wedge \\
& (w \leftrightarrow u \wedge v) \wedge \\
& (o \leftrightarrow y \oplus w)
\end{aligned}
$$

$$
\begin{aligned}
& o \wedge(x \rightarrow a) \wedge(x \rightarrow c) \wedge \\
& (x \leftarrow a \wedge c) \wedge \ldots
\end{aligned}
$$

$$
o \wedge(\bar{x} \vee a) \wedge(\bar{x} \vee c) \wedge(x \vee \bar{a} \vee \bar{c}) \wedge \ldots
$$

Tseitin Transformation: Gate Constraints

$$
\begin{aligned}
\text { Negation: } \quad \begin{aligned}
x \leftrightarrow \bar{y} & \Leftrightarrow(x \rightarrow \bar{y}) \wedge(\bar{y} \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y}) \wedge(y \vee x) \\
& \\
\text { Disjunction: } \quad x \leftrightarrow(y \vee z) & \Leftrightarrow(y \rightarrow x) \wedge(z \rightarrow x) \wedge(x \rightarrow(y \vee z)) \\
& \Leftrightarrow(\bar{y} \vee x) \wedge(\bar{z} \vee x) \wedge(\bar{x} \vee y \vee z) \\
& \\
\text { Conjunction: } \quad x \leftrightarrow(y \wedge z) & \Leftrightarrow(x \rightarrow y) \wedge(x \rightarrow z) \wedge((y \wedge z) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\overline{(y \wedge z)} \vee x) \\
& \Leftrightarrow(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z} \vee x)
\end{aligned}
\end{aligned}
$$

Tseitin Encoding of If-Then-Else Gate

$$
\begin{aligned}
x \leftrightarrow(c ? t: e) & \Leftrightarrow(x \rightarrow(c \rightarrow t)) \wedge(x \rightarrow(\bar{c} \rightarrow e)) \wedge(\bar{x} \rightarrow(c \rightarrow \bar{t})) \wedge(\bar{x} \rightarrow(\bar{c} \rightarrow \bar{e})) \\
& \Leftrightarrow(\bar{x} \vee \bar{c} \vee t) \wedge(\bar{x} \vee c \vee e) \wedge(x \vee \bar{c} \vee \bar{t}) \wedge(x \vee c \vee \bar{e})
\end{aligned}
$$

minimal but not arc consistent:

- if t and e have the same value then x needs to have that too
- possible additional clauses

$$
(\bar{t} \wedge \bar{e} \rightarrow \bar{x}) \equiv(t \vee e \vee \bar{x}) \quad(t \wedge e \rightarrow x) \equiv(\bar{t} \vee \bar{e} \vee x)
$$

- but can be learned or derived through preprocessing (ternary resolution) keeping those clauses redundant is better in practice

Example of Logical Constraints: XOR Constraints

$$
\text { 2-long XOR: } \quad \begin{aligned}
& l_{1} \oplus l_{2}=1 \Leftrightarrow \begin{array}{l}
\bar{l}_{1} \vee l_{2} \wedge \\
\\
\\
l_{1} \vee \bar{l}_{2} \wedge
\end{array}
\end{aligned}
$$

3-long XOR: $\quad l_{1} \oplus l_{2} \oplus l_{3}=1 \Leftrightarrow l_{1} \vee l_{2} \vee l_{3} \wedge$ $\bar{l}_{1} \vee \bar{l}_{2} \vee l_{3} \wedge$ $\bar{l}_{1} \vee l_{2} \vee \bar{l}_{3} \wedge$ $l_{1} \vee \bar{l}_{2} \vee \bar{l}_{3} \wedge$

4-long XOR: $\quad l_{1} \oplus l_{2} \oplus l_{3} \oplus l_{4}=1 \quad \Leftrightarrow \quad l_{1} \vee l_{2} \vee l_{3} \vee l_{4} \wedge$ $\bar{l}_{1} \vee \bar{l}_{2} \vee l_{3} \vee l_{4} \wedge$ $\bar{l}_{1} \vee l_{2} \vee \bar{l}_{3} \vee l_{4} \wedge$ $l_{1} \vee \bar{l}_{2} \vee \bar{l}_{3} \vee l_{4} \wedge$ $\bar{l}_{1} \vee l_{2} \vee l_{3} \vee \bar{l}_{4} \wedge$ $l_{1} \vee \bar{l}_{2} \vee l_{3} \vee \bar{l}_{4} \wedge$ $l_{1} \vee l_{2} \vee \bar{l}_{3} \vee \bar{l}_{4} \wedge$ $\bar{l}_{1} \vee \bar{l}_{2} \vee \bar{l}_{3} \vee \bar{l}_{4} \wedge$
In general, a k-long XOR constraint translates to 2^{k-1} clauses without helper variables

Example of Logical Constraints: XOR Constraints Cont.

We use helper variables to bring down the 2^{k-1} clauses needed:

$$
\begin{aligned}
l_{1} \oplus l_{2} \oplus l_{3} \oplus l_{4} \oplus l_{5} \oplus l_{6} \oplus l_{7}=1 \quad \Leftrightarrow & l_{1} \oplus l_{2} \oplus l_{3} \oplus h_{1} \wedge \\
& h_{1} \oplus l_{4} \oplus l_{5} \oplus h_{2} \wedge \\
& h_{3} \oplus l_{6} \oplus l_{7}
\end{aligned}
$$

Now we have:

- $\lfloor k-1 / 2\rfloor$ helper variables
- $\lfloor(k-1) / 2\rfloor+\lceil k / 2\rceil$ XORs, each at most 4 long
- \rightarrow the number of clauses needed is linear in k

Different trade-offs are possible, this is called the "cutting number".

Example of Logical Constraints: Cardinality Constraints

- given a set of literals $\left\{l_{1}, \ldots l_{n}\right\}$
- constraint the number of literals assigned to true
- $l_{1}+\cdots+l_{n} \geq k$ or $l_{1}+\cdots+l_{n} \leq k$ or $l_{1}+\cdots+l_{n}=k$
- combined make up exactly all fully symmetric boolean functions
- multiple encodings of cardinality constraints
- naive encoding exponential: at-most-one quadratic, at-most-two cubic, etc.
- quadratic $O(k \cdot n)$ encoding goes back to Shannon
- linear $O(n)$ parallel counter encoding [Sinz'05]
- many variants even for at-most-one constraints
- for an $O(n \cdot \log n)$ encoding see Prestwich's chapter in Handbook of SAT
- typically arc consistency is expensive in terms of encoding

DIMACS Format

```
$ cat example.cnf
c comments start with 'c' and extend until the end of the line
c
c variables are encoded as integers:
c
c 'jewellery' becomes '1'
c 'shirt' becomes '2'
C
c header 'p cnf <variables> <clauses>'
c
p cnf 2 3
\begin{tabular}{rrrlrl}
-1 & 2 & 0 & c & ! jewellery & or shirt \\
1 & 2 & 0 & c & jewellery & or shirt \\
-1 & -2 & 0 & c & !jewellery & or !shirt
\end{tabular}
$ picosat example.cnf
s SATISFIABLE
v -1 2 0
```


SAT Application Programmatic Interface (API)

- incremental usage of SAT solvers
- add facts such as clauses incrementally
- call SAT solver and get satisfying assignments
- optionally retract facts
- retracting facts
- remove clauses explicitly: complex to implement
- push / pop: stack like activation, no sharing of learned facts
- MiniSAT assumptions [EénSörensson'03]
- assumptions
- unit assumptions: assumed for the next SAT call
- easy to implement: force SAT solver to decide on assumptions first
- shares learned clauses across SAT calls
- IPASIR: Reentrant Incremental SAT API
- used in the SAT competition / race since 2015

IPASIR Model

IPASIR Functions

```
const char * ipasir_signature ();
void * ipasir_init ();
void ipasir_release (void * solver);
void ipasir_add (void * solver, int lit_or_zero);
void ipasir_assume (void * solver, int lit);
int ipasir_solve (void * solver);
int ipasir_val (void * solver, int lit);
int ipasir_failed (void * solver, int lit);
void ipasir_set_terminate (void * solver, void * state,
int (*terminate) (void * state));
```

```
#include "ipasir.h"
#include <assert.h>
#include <stdio.h>
#define ADD(LIT) ipasir_add (solver, LIT)
#define PRINT(LIT) \
    printf (ipasir_val (solver, LIT) < 0 ? " -" #LIT : " " #LIT)
int main () {
    void * solver = ipasir_init ();
    enum { tie = 1, shirt = 2 };
    ADD (-tie); ADD ( shirt); ADD (0);
    ADD ( tie); ADD ( shirt); ADD (0);
    ADD (-tie); ADD (-shirt); ADD (0);
    int res = ipasir_solve (solver);
    assert (res == 10);
    printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
    printf ("assuming now: tie shirt\n");
    ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
    res = ipasir_solve (solver);
    assert (res == 20);
    printf ("unsatisfiable, failed:");
    if (ipasir_failed (solver, tie)) printf (" tie");
    if (ipasir_failed (solver, shirt)) printf (" shirt");
    printf ("\n");
    ipasir_release (solver);
    return res;
}
```

- dates back to the 50 'ies:
$1^{\text {st }}$ version DP is resolution based
$2^{\text {nd }}$ version $D(P) L L$ splits space for time
- ideas:
- $1^{\text {st }}$ version: eliminate the two cases of assigning a variable in space or
- $2^{\text {nd }}$ version: case analysis in time, e.g. try $x=0,1$ in turn and recurse
- most successful SAT solvers are based on variant (CDCL) of the second version
- recent (≤ 25 years) optimizations:
backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
(we will have a look at some of these)
forever
if $F=\top$ return satisfiable
if $\perp \in F$ return unsatisfiable
pick remaining variable x
add all resolvents on x
remove all clauses with x and $\neg x$

Bounded Variable Elimination

[EénBiere-SAT'05]

$$
\begin{array}{llllll}
& (\bar{x} \vee a)_{1} & (\bar{x} \vee c)_{4} \\
\text { Replace } & (\bar{x} \vee b)_{2} & (x \vee d)_{5}
\end{array} \quad \text { by } \begin{array}{lll}
& (a \vee \bar{a} \vee \bar{b})_{13} & (a \vee d)_{15} \\
& (c \vee \vee))_{45} \\
& (x \vee \bar{a} \vee \bar{b})_{23} & (b \vee d)_{25}
\end{array}
$$

- number of clauses not increasing
- strengthen and remove subsumbed clauses too
- most important and most effective preprocessing we have

Bounded Variable Addition

[MantheyHeuleBiere-HVC'12]

$$
\begin{array}{llllll}
& (a \vee d) & (a \vee e) \\
\text { Replace } & (b \vee d) & (b \vee e) \\
& (c \vee d) & (c \vee e)
\end{array} \quad \text { by } \quad \begin{array}{ll}
(\bar{x} \vee a) & (\bar{x} \vee b) \\
& (x \vee d) \\
& (x \vee e)
\end{array} \quad(\bar{x} \vee c)
$$

- number of clauses has to decrease strictly
- reencodes for instance naive at-most-one constraint encodings

DPLL(F)
$F:=B C P(F)$
if $F=\top$ return satisfiable
if $\perp \in F$ return unsatisfiable
pick remaining variable x and literal $l \in\{x, \neg x\}$
if $D P L L(F \wedge\{l\})$ returns satisfiable return satisfiable
return $D P L L(F \wedge\{\neg l\})$

DPLL Example

Lookahead solvers are based on this with:

- smart heuristics to pick variable to branch on
- processing of instance after every branch

Conflict Driven Clause Learning (CDCL)

[MarqueSilvaSakallah'96]

- first implemented in the context of GRASP SAT solver
- name given later to distinguish it from DPLL
- not recursive anymore
- essential for SMT
- learning clauses as no-goods
- notion of implication graph
- (first) unique implication points

Conflict Driven Clause Learning (CDCL)

Conflict Driven Clause Learning (CDCL)

Conflict Driven Clause Learning (CDCL)

		clauses
$a=1$	${ }_{7} a \mathrm{BCP}$ ${ }_{\neg} c \quad$ decision	$\begin{aligned} & \neg a \vee \neg b \vee \neg c \\ & \neg a \vee \neg b \vee c \\ & \neg a \vee b \vee \neg c \end{aligned}$
$b=0$		$\begin{gathered} \neg a \vee b \vee c \\ a \vee \neg b \vee \neg c \end{gathered}$
$c=0$	$\neg b$ BCP	$a \vee \neg b \vee c$
$c=0$		$a \vee b \vee \neg c$
		$a \vee b \vee c$
		$\neg a \vee \neg b$
		${ }_{7} a$
	learn	c

Conflict Driven Clause Learning (CDCL)

Implication Graph

Conflict

Backjumping

If y has never been used to derive a conflict, then skip \bar{y} case.

Immediately jump back to the \bar{x} case - assuming x was used.

Decision Heuristics

- number of variable occurrences in (remaining unsatisfied) clauses (LIS)
- eagerly satisfy many clauses with many variations studied in the 90ies
- actually expensive to compute
- dynamic heuristics
- focus on variables which were useful recently in deriving learned clauses
- can be interpreted as reinforcement learning
- started with the VSIDS heuristic
- most solvers rely on the exponential variant in MiniSAT (EVSIDS)
- recently showed VMTF as effective as VSIDS
- look-ahead
- spent more time in selecting good variables (and simplification)
- related to our Cube \& Conquer paper
[HeuleKullmanWieringaBiere-HVC'11]
- "The Science of Brute Force"
[Heule \& Kullman CACM August 2017]
- EVSIDS during stabilization VMTF otherwise

Exponential VSIDS (EVSIDS)

Chaff

- increment score of involved variables by 1
- decay score of all variables every 256 'th conflict by halfing the score
- sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS

[EénSörensson'03]

- update score of involved variables
- dynamically adjust increment: $\quad \delta^{\prime}=\delta \cdot \frac{1}{f}$
as actually LIS would also do
typically increment δ by 5\%
- use floating point representation of score
- "rescore" to avoid overflow in regular intervals
- EVSIDS linearly related to NVSIDS

Basic CDCL Loop

int basic_cdcl_loop () \{
int res $=0$;
while (!res)
if (unsat) res = 20;
else if (!propagate ()) analyze (); // analyze propagated conflict
else if (satisfied ()) res = 10;
else decide ();
// all variables satisfied
// otherwise pick next decision
return res;
\}

Reducing Learned Clauses

- keeping all learned clauses slows down BCP
- so SATO and ReISAT just kept only "short" clauses
- better periodically delete "useless" learned clauses
- keep a certain number of learned clauses
- if this number is reached MiniSAT reduces (deletes) half of the clauses
- then maximum number kept learned clauses is increased geometrically
- LBD (glucose level / glue) prediction for usefulness
- LBD = number of decision-levels in the learned clause
- allows arithmetic increase of number of kept learned clauses
- keep clauses with small LBD forever ($\leq 2 \ldots 5$)
- three Tier system by [Chanseok Oh]
- recent work on machine-learning heuristic based on labelled proof data

Restarts

- often it is a good strategy to abandon what you do and restart
- for satisfiable instances the solver may get stuck in the unsatisfiable part
- for unsatisfiable instances focusing on one part might miss short proofs
- restart after the number of conflicts reached a restart limit
- avoid to run into the same dead end
- by randomization (either on the decision variable or its phase)
- and/or just keep all the learned clauses during restart
- for completeness dynamically increase restart limit
- arithmetically, geometrically, Luby, Inner/Outer
- Glucose restarts [AudemardSimon-CP'12]
- short vs. large window exponential moving average (EMA) over LBD
- if recent LBD values are larger than long time average then restart
- interleave "stabilizing" (no restarts) and "non-stabilizing" phases [Chanseok Oh]

Luby's Restart Intervals

70 restarts in 104448 conflicts

Phase Saving and Rapid Restarts

- phase assignment:
- assign decision variable to 0 or 1 ?
- lucky guess can lead to immediate solution to a satisfiable instance
- "phase saving" as in RSat [PipatsrisawatDarwiche'07]
- pick phase of last assignment (if not forced to, do not toggle assignment)
- initially use statically computed phase (typically LIS)
- so can be seen to maintain a global full assignment
- rapid restarts
- varying restart interval with bursts of restarts
- not only theoretically avoids local minima
- works nicely together with phase saving
- reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT'11]
- target phases of largest conflict free trail / assignment [Biere-SAT-Race-2019]

CDCL Loop with Reduce and Restart

```
int basic_cdcl_loop_with_reduce_and_restart () {
    int res = 0;
    while (!res)
            if (unsat) res = 20;
        else if (!propagate ()) analyze (); // analyze propagated conflict
        else if (satisfied ()) res = 10; // all variables satisfied
        else if (restarting ()) restart (); // restart by backtracking
        else if (reducing ()) reduce (); // collect useless learned clauses
        else decide ();
// otherwise pick next decision
return res;
}
```


Code from the SAT Solver CaDiCaL by Armin Biere

```
int Internal::cdcl_loop_with_inprocessing () {
    int res = 0;
    while (!res) {
            if (unsat) res = 20;
    else if (!propagate ()) analyze (); // propagate and analyze
    else if (iterating) iterate (); // report learned unit
    else if (satisfied ()) res = 10; // found model
    else if (terminating ()) break; // limit hit or async abort
    else if (restarting ()) restart (); // restart by backtracking
    else if (rephasing ()) rephase (); // reset variable phases
    else if (reducing ()) reduce (); // collect useless clauses
    else if (probing ()) probe (); // failed literal probing
    else if (subsuming ()) subsume (); // subsumption algorithm
    else if (eliminating ()) elim (); // variable elimination
    else if (compacting ()) compact (); // collect variables
    else if (conditioning ()) condition (); // globally blocked clauses
    else res = decide (); // next decision
}
return res;
}
```


Two-Watched Literal Schemes

- original idea from SATO
- invariant: always watch two non-false literals
- if a watched literal becomes false replace it
- if no replacement can be found clause is either unit or empty
- original version used head and tail pointers on Tries
- improved variant from Chaff
- watch pointers can move arbitrarily
- no update needed during backtracking
- one watch is enough to ensure correctness
[MoskewiczMadiganZhaoZhangMalik'01]
SATO: head forward, tail backward
- reduces visiting clauses by $10 x$
- particularly useful for large and many learned clauses
- blocking literals [ChuHarwoodStuckey'09]
- special treatment of short clauses (binary [PilarskiHu'02] or ternary [Ryan'04])
- cache start of search for replacement [Gent-JAIR'13]

Parallel SAT

- Application level parallelism
- Guiding path principle
- Portfolio (with or without sharing)
- Concurrent cube \& conquer

Proofs

SAT solvers are search-directed proof systems.

They only incidentally find satisfying assignments.
When and why are they important?

- If solution is UNSAT then proofs are super-important
- Determines minimum number of resolutions
- SAT solver cannot finish in less than that many steps
- If it's exponential in input size, we are in a mess \div
- If solution is SAT then maybe not so important?
- Observe: pruning solution space is done through resolvents
- We are building a proof that certain parts of the search space are devoid of solutions
- Experimentally easy to validate: give XOR matrix with a solution to a SAT solver `_(ツ)_/

Hence, the proof we are generating is very important.

Proofs: Example proof

Say we want to prove that the following set of clauses is UNSAT:

$$
\begin{aligned}
& \begin{array}{ll}
\bar{a} \vee \bar{b} \vee z & \wedge \bar{c} \vee \bar{d} \vee \bar{z} \wedge \\
a \vee b \vee z & \wedge c \vee d \vee \bar{z} \\
\bar{a} \vee b \vee z & \wedge \bar{c} \vee d \vee \bar{z} \\
a \\
a \vee \bar{b} \vee z & \wedge c \vee \bar{d} \vee \bar{z}
\end{array} \\
& \bar{a} \vee \bar{b} \vee z \\
& \stackrel{\rightharpoonup}{\bar{a}} \vee b \vee z \quad \bar{a} \vee z \quad \text { Observe: we could } \\
& a \vee \bar{b} \vee z \\
& \odot \\
& a \vee z \\
& a \vee b \vee z
\end{aligned}
$$

Proofs: Example proof cont.

Homework: how many different resolution trees are there for deriving \perp here?
(How many ways to derive z ? And \bar{z} ?)

Proofs: Some observations

- In general there are many different proofs
- Proof forms a DAG
- Proof is acyclic but not necessarily tree-like
- Different proofs can be very different in size
- Input set of clauses to the proof called the "core" of the CNF
- Often many different cores, too (like above)
- Cores are useful: For example, can tell us why we cannot schedule a tournament
- we must relax some of the constraints indicated by the core clauses
- but there might be more than one core, so may need to relax more than one!
- Pigeonhole principle [Hak85] formulas' proofs are lower bound exponential in size © ${ }^{\circ}$
- We can (and should) explore stronger reasoning methods
- One way is to do $\operatorname{CDCL}(\mathrm{T})$, where T are the new theories

RUP / DRUP

- original idea for proofs: proof traces / sequence consisting of "learned clauses"
- can be checked clause by clause through unit propagation
- reverse unit implied clauses (RUP) [GoldbergNovikov'03] [VanGelder'12]
- deletion information (DRUP): trace of added and deleted clauses [HeuleHuntWetzler-FMCAD'13/STVR'14]
- RUP in SAT competition 2007, 2009, 2011, DRUP since 2013 to certify UNSAT

Blocked Clauses

[Kullman-DAM'99] [JärvisaloHeuleBiere-JAR'12]

- clause $(a \vee l)$ "blocked" on l w.r.t. CNF $(\bar{a} \vee b) \wedge(l \vee c) \wedge \underbrace{(\bar{l} \vee \bar{a})}_{D}$
- all resolvents of C on l with clauses D in F are tautological
- blocked clauses are "redundant" too
- adding or removing blocked clauses does not change satisfiability status
- however it might change the set of models

Resolution Asymmetric Tautologies (RAT) "Inprocessing Rules" [JärvisaloHeuleBiere-IJCAR'12]

- justify complex preprocessing algorithms in Lingeling
- examples are adding blocked clauses or variable elimination
- interleaved with research (forgetting learned clauses = reduce)
- need more general notion of redundancy criteria
- simply replace "resolvents are tautological" by "resolvents on l are RUP"

$$
(a \vee l) \quad \text { RAT on } l \quad \text { w.r.t. } \quad(\bar{a} \vee b) \wedge(l \vee c) \wedge \underbrace{(\bar{l} \vee b)}_{D}
$$

- deletion information is again essential (DRAT) [HeuleHuntWetzler-FMCAD'13/STVR'14]
- now mandatory in the main track of the SAT competitions since 2013
- pretty powerful: can for instance also cover symmetry breaking

Gauss-Jordan Elimination

Gaussian part, getting upper-triangular matrix:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \quad \rightarrow\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Jordan part, getting row-echelon form:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \rightarrow\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- The naive implementation above is $O\left(n^{3}\right)$ steps
- More sophisticated versions take around $O\left(n^{2.8}\right)$ steps
- If resolution operator is all we have, shortest proof is exponential in n

$\operatorname{CDCL}(\mathrm{T})$

For theories that are not efficiently simulated by CDCL

- T is the theory, e.g.:
- Gauss-Jordan Elimination [SoosNohICastelluccia'2010]
- Pseudo-Boolean Reasoning [ChaiKuehlmann'2006]
- Symmetric Explanation Learning [DevriendtBogaertsBruynooghe'2017]
- Theory is run side-by-side to the CDCL algorithm
- Propagate values implied by Theory given current assignment stack of CDCL
- Conflict if Theory implies $1=0$ given current assignment stack of CDCL
- Theory must give reason for propagations\&conflicts

CDCL(T) Cont.

Optimizations:

- Should only send delta of assignment stack + conflict clauses
- Variables assigned (decisions + propagations)
- Variables unassigned (backtracking, restarting)
- New conflict clauses
- Theory only needs to compute delta relative to old state
- Theory can give placeholders for reasons
- If reason is needed during conflict generation, Theory is queried
- Called "lazy" (vs "greedy") interpolant generation

CDCL(T) Gauss-Jordan Elimination: Ingredients

What components do we need?

- Extractor for XOR constraints: XORs may be encoded as CNF
- Disjoint matrix detection: disjoint matrices should be handled separately
- Delta update mechanism for row-echelon form matrix:
- how to handle when variable is set
- how to handle when variable is unset
- Efficient data structures to allow for quick updates
- Reason generation

CDCL(T) Gauss-Jordan Elimination: Extraction

$$
\begin{aligned}
l_{1} \oplus l_{2} \oplus l_{3}=1 \Leftrightarrow & l_{1} \vee l_{2} \vee l_{3} \wedge \\
& \bar{l}_{1} \vee \bar{l}_{2} \vee l_{3} \wedge \\
& \bar{l}_{1} \vee l_{2} \vee \bar{l}_{3} \wedge \\
& l_{1} \vee \bar{l}_{2} \vee \bar{l}_{3} \wedge \\
l_{1} \oplus l_{2} \oplus l_{3}=1 \leftarrow & \leftarrow \\
& l_{1} \vee l_{2} \vee \wedge \\
& \bar{l}_{1} \vee \bar{l}_{2} \vee l_{3} \wedge \\
& \bar{l}_{1} \vee l_{2} \vee \bar{l}_{3} \wedge \\
& l_{1} \vee \bar{l}_{2} \vee \bar{l}_{3} \wedge
\end{aligned}
$$

- Missing literals only mean something stronger than XOR
- XOR is still implied and should be detected

CDCL(T) Gauss-Jordan Elimination: Extraction

```
Algorithm 1 ComputeBloom
    1: abst }\leftarrow
2: for var in clause do
        abst \leftarrowabst | (1<< (var % 32))
    return abst
```

```
Algorithm 2 Barbet(clauses, \(M\) )
    : xorclauses \(\leftarrow \emptyset\)
    for base cl \(\in\) clauses do
        if base_cl.size \(>M\) then continue
        if base_cl.used == 1 then continue
    FIND_ONE_XOR(base_cl)
        return xorclauses
```

```
function FindOneXOR(base_cl)
    quickcheck }\leftarrow\mathrm{ array of zeroes
    found_comb }\leftarrow\mathrm{ array of zeroes
    comb}\leftarrow
    baserhs }\leftarrow
    for i}\leftarrow0\ldots...\mathrm{ base_cl size-1 do
        base_rhs }\leftarrow\mathrm{ base_rhs }\oplus\mathrm{ base_cl[i].sign
        comb }\leftarrow\mathrm{ comb | (base_cl[i].sign << i)
        quickcheck[base_cl[i].var] \leftarrow1
    base_abst \leftarrow CALC_ABST(base_cl)
        found_comb[comb] \leftarrow1
        for v }\in\operatorname{Vars(base_cl) do
            for abst, cl \in occurrence[v] do
                if CheckClause(abst, cl, base_cl, base_abst) then return
```


CDCL(T) Gauss-Jordan Elimination: Matrix Separation

```
function FINDMATRIXES(xors)
    matrixnum}\leftarrow0\mathrm{ , var-to-matrix }\leftarrow-1\mathrm{ , matrix-to-vars }\leftarrow\mathrm{ empty
    for xor }\in\mathrm{ xors do
        xor-belongs }\leftarrow-
        for var }\in\mathrm{ xor do
        if var-to-matrix[var] != -1 then
        if xor-belongs == -1 then xor-belongs = var-to-matrix[var]
        else if xor-belongs != var-to-matrix[var] then
            Move all variables from var-to-matrix[var] to xor-belongs
        if xor-belongs == -1 then
        xor-belongs }\leftarrow\mathrm{ matrixnum++
        for var }\in\mathrm{ xor do
            var-to-matrix[var] = xor-belongs
```


CDCL(T) Gauss-Jordan Elimination: None of that row swapping please!

Observations:

- We are using binary matrixes (1/0), so bit-packed format is best
- Packed format: row-swapping becomes expensive - it's a copy
- Row-echelon form is nice for the eyes [HanJiang2012]:
- But we only need a row to be responsible for a column's "1"
- What we loose: have to check all rows, not only ones below
- So, any row can be responsible for being a column's "1"

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

CDCL(T) Gauss-Jordan Elimination: 2-variable watchlist scheme

Let's use a 2-variable watch scheme [HanJiang2012]:

- If 2 or more variables are unset in XOR constraint, it cannot propagate or conflict
- If 1 variable is unset, it must propagate
- If 0 variable is unset, it is either satisfied or is in conflict

We'll use the Simplex Method's terminology:

- Let's call the column that the row is responsible for "basic"
- Let's call the column that the row is NOT responsible for "nonbasic"

What data structures do we need for this? Let's see:

- Watchlist for variables (not literals!)
- column-has-responsible-row[column] = $1 / 0$
- row-to-nonbasic-column[row] = column

CDCL(T) Gauss-Jordan Elimination: Propagation

A rough outline:

- Observe that the matrix is usually underdetermined: more columns than rows
- Many unset columns will have no responsible rows
- If we set a variable, its column doesn't need a responsible row
- The more variables we decide on, the more the matrix will be determined
$\left[\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
we get a propagation! \rightarrow

Let's set the first column to " 1 " $\rightarrow \quad\left[\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

Notice: we were were watching both of this row's variables where it has a "1". It's a 2-variable watch scheme!

We got a propagation from last slide:

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Variable is now set by Gauss-Jordan \rightarrow

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Need new responsible variable
\rightarrow

New propagation \rightarrow
Variable is decided on \rightarrow

Must adjust matrix

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

And the story goes on...

CDCL(T) Gauss-Jordan Elimination: Reason Clauses

What combination of XOR constraints gave us the propagation?

- The above set of matrixes cannot give us the reason clause
- Easy solution: the "green" columns are actually not zeroed out
- When looking for propagations/conflicts, we check if columns' variable is set. If yes, we pretend it's a 0
- When looking for reasons, we use the actual values
- All the row-XOR operations happen as before

Hence:

- Each row is a combination of input XOR constraints
- It is guaranteed to propagate/conflict under current variable assignment

When a variable is set, we are just wearing "green glasses"

CDCL(T) Gauss-Jordan Elimination: Backtracking

If we don't zero out the columns, we get a free bonus! If we need to unset an assignment due to backtracking, we pretend we never set it (remove "green glasses"):

- All previous invariants still hold
- If the column had a responsible row, it still has it
- Both watches of the row are still good and in the watchlists
- Matrix looks differently than when we last had this assignment... is that a problem?
- No! Observe: new matrix could have been reached from the starting position, pivoting differently(!)

CDCL(T) Gauss-Jordan Elimination: Recap

Let's recap! What was hard:

- Extracting XOR constraints
- Keeping CDCL and GJ in sync:
- Fast update for variable setting (propagation)
- Fast update for backtracking (conflict)
- Reason clause generation

Symmetries: teaser

- Let's put 10 birds into 10 holes, 1 bird per hole: pigeonhole principle
- Let's schedule 10 teams to 5 stadiums over 200 days
- Symmetries are often non-trivially encoded into the CNF
- Sometimes, encoding them differently can get rid of them, but sometimes it's hard

Symmetries: preliminaries

- For a given formula φ, an assignment of the variables of φ is a function $\alpha: \mathcal{V} \rightarrow\{1,0\}$
- Permutation is a bijection from a set to itself
- Cycle notation of a permutation: (abc)(de) maps a to b, b to c, c to a, swaps d with e, and maps all other elements to themselves
- Permutations form algebraic groups under the composition relation (\odot)
- Group of permutations of \mathcal{V} (i.e. bijections from \mathcal{V} to \mathcal{V}) is noted $\mathfrak{G}(V)$
- Group $\mathfrak{G}(V)$ acts on the set of literals. For $g \in \mathfrak{G}(V)$ and a literal $l \in \mathcal{L}$
- $g . l=g(l)$ if l is a positive literal
- $g . l=\overline{g(\bar{l})}$ if l is a negative literal
- Group $\mathfrak{G}(V)$ also acts on (partial) assignments of \mathcal{V} : for $g \in \mathfrak{G}(V), \alpha \in \operatorname{Ass}(\mathcal{V}), g . \alpha=\{g . l \mid l \in \alpha\}$
- Let φ be a formula, and $g \in \mathfrak{G}(V)$. We say that $g \in \mathfrak{G}(V)$ is a symmetry of φ if for every complete assignment $\alpha, \alpha \models \varphi$ if and only if $g . \alpha \models \varphi$

Symmetries: Example permutation

All of this did not click until I found the work of Devriend, Bogaerts, Bruynooghe and Denecker, BreakID:

```
$ cat mycnf.cnf
p cnf 4 4
1 2 3 0
1-2 3 0
-1 4 0
-3 4 0
```

Makes sense:

- If we substitute 1 with 3 everywhere and vica versa, it's the same!
- If we substitute 2 with -2 everywhere and vica versa, it's the same!

Symmetries: examples

```
$ cat c.cnf
p cnf 6 7
1 -2 3 0
1 2 3 0
-1 4 0
-3 4 0
c ---------------
5 -2 6 0
5 4 0
640
Makes sense:
```

- I can no longer substitute 2 for -2 and vica-versa, it won't be the same CNF
- Any combination of $1 \leftrightarrow 3$ and $5 \leftrightarrow 6$ works. Hence these permutations can be combined.

Symmetries: obtaining them

Let's create an undirected, vertex-coloured graph:

- Each literal is a vertex, colour green
- Each clause is a vertex, colour red
- Each literal is connected to its inverse
- Each clause's vertex is connected to the literals' vertices inside it
- The automorphism groups of this graph are the symmetry groups of the CNF

Symmetries: the graph

```
$ cat c.cnf
p cnf 6 4
2 6 0
1 -2 3 0
1 4 0
3 0
```

\$./breakid mycnf.cnf
-- Permutations:
(1 3) (-1 -3) (4 5) (-4 -5)

Symmetries: the graph, example 2

```
$ cat d.cnf
p cnf 6 4
2 6 0
1 -2 -3 0
1 4 0
-3 5 0
```

\$./breakid mycnf.cnf
-- Permutations:
(1 -3) (-1 3) (4 5) (-4 -5)

Symmetries: solutions

```
$ ./breakid mycnf.cnf
*** Detecting symmetry group...
-- Permutations:
( 1 3 ) ( -1 -3 )
( 5 6 ) ( -5 -6 )
```

OK, so how about the solutions?

- If a solution has $v_{1}=1, v_{3}=0$ we obviously have another solution: $v_{1}=0, v_{3}=1$
- If a solution has $v_{5}=1, v_{6}=0$ we obviously have another solution: $v_{5}=0, v_{6}=1$
- But do we always have $4 x$ more solutions?
- NO! How about when the only solution has $v_{1}=0, v_{3}=0$?

Symmetries: solutions, example 2

```
$ ./breakid mycnf.cnf
-- Permutations:
(1 3) (-1 -3) (4 5) (-4 -5)
```

OK, so how about the solutions?

- If a solution has $v_{1}=1, v_{3}=0$ we obviously have another solution: $v_{1}=0, v_{3}=1$
- If a solution has $v_{1}=0, v_{3}=0, v_{4}=1, v_{5}=0$ we still have another solution: $v_{1}=0, v_{3}=0, v_{4}=0, v_{5}=1$
- But if a solution has $v_{1}=0, v_{3}=0, v_{4}=0, v_{5}=0 \rightarrow$ we can't do anything
- Similarly if a solution has $v_{1}=1, v_{3}=1, v_{4}=1, v_{5}=1 \rightarrow$ we can't do anything

Symmetries: breaking them

Let's observe the following:

- If we make sure that $v_{4} \geq v_{5}$ then we eliminate some of the symmetry
- But that doesn't eliminate the symmetry where $v_{4}=v_{5}$
- For that, we need another constraint: $v_{4}=v_{5} \rightarrow v_{1} \geq v_{3}$
- The above two eliminate solutions where:
- $v_{4}=0, v_{5}=1$
- $v_{4}=0, v_{5}=0, v_{1}=1, v_{3}=0$
- $v_{4}=1, v_{5}=1, v_{1}=1, v_{3}=0$
- These correspond to clauses:
- $v_{4} \vee \bar{v}_{5}$
- $v_{7} \leftrightarrow \bar{v}_{4} \vee v_{5}$
- $v_{7} \rightarrow \bar{v}_{1} \vee v_{3}$
- Note that v_{7} is an indicator variable. It is true when:
- $v_{4}=0, v_{5}=0$
- $v_{4}=1, v_{5}=1$
- $v_{4}=0, v_{5}=1$ But this never occurs! (remember: $v_{4} \geq v_{5}$)
- Hence, it's only true when $v_{4}=v_{5}$
- Is this symmetry breaking complete?

Symmetries: breaking them

```
$ cat c.cnf
p cnf 6 4
2 0
1
140
3 0
$ ./breakid c.cnf -b --only-b
-- Permutations:
(1 3)
c breaking clauses: 4
c aux vars: 1
-5 4 0
-7 -1 3 0
-7
    740
    7-5 0
```

Let's observe the following:

- If we make sure that $v_{4} \geq v_{5}$ then we eliminate some of the symmetry
- But that doesn't eliminate the symmetry where $v_{4}=v_{5}$
- For that, we need another constraint: $v_{4}=v_{5} \rightarrow v_{1} \geq v_{3}$
- The above two eliminate solutions where:
- $v_{4}=0, v_{5}=1$
- $v_{4}=0, v_{5}=0, v_{1}=1, v_{3}=0$
- $v_{4}=1, v_{5}=1, v_{1}=1, v_{3}=0$
- These correspond to clauses:
- $v_{4} \vee \bar{v}_{5}$
- $v_{7} \leftrightarrow \bar{v}_{4} \vee v_{5}$
- $v_{7} \rightarrow \bar{v}_{1} \vee v_{3}$
- Note that v_{7} is an indicator variable. It is true when:
- $v_{4}=0, v_{5}=0$
- $v_{4}=1, v_{5}=1$
- $v_{4}=0, v_{5}=1$ But this never occurs! (remember: $v_{4} \geq v_{5}$)
- Hence, it's only true when $v_{4}=v_{5}$
- Is this symmetry breaking complete?

Symmetries: CDCL(T)

CDCL(T) systems for symmetries:

- "Static" handling through symmetry breaking clauses
- Shatter [AloulRamanMiarkovSakallah2003]
- BreakID [DevriendtBogaertsBruynoogheDenecker2016]
- "Dynamic" handling through dynamic symmetry breaking clauses, propagations, and conflicts:
- Symmetric explanation learning [DevriendtBogaertsBruynooghe2017]
- Symmetry status tracking [MetinBaarirColangeKordon2018]

Symmetries: CDCL(T) static breaking

If $\mathfrak{G}(\mathcal{V}$ is a symmetry group, then a symmetry breaking formula ψ is sound if for each assignment α there exists at least one symmetry $g \in \mathfrak{G}(\mathcal{V})$ such that $g . \alpha$ satisfies $\psi . \psi$ is complete if for each assignment α there exists at most one symmetry $g \in \mathfrak{G}(\mathcal{V})$ such that $g . \alpha$ satisfies ψ [Walsh2012].

- It's easy to make a sound symmetry breaking formula
- It's hard to make it compact and complete

Biggest issue is size:

- Adding lots of clauses makes the SAT solver slow
- Adding lots of variables can make the SAT solver loose track of the real problem (VSIDS may go off the rails)

Solutions:

- Only add clauses up to a certain size
- Only add a maximum N number of clauses or literals
- Detect symmetries that are cheap to break and can be broken completely

Symmetries: $\operatorname{CDCL}(\mathrm{T})$ dynamic breaking

Different ways:

- Add symmetric learnt clauses ("Symmetric Learning") [BenhamouNabhaniOstrowskiSaidi2010]
- Keep only active symmetry blocking clauses ("Symmetric Explanation Learning") [DevriendtBogaertsBruynooghe2017]
- Don't branch into search space that are symmetric ("SymChaff") [Sabharwal2009]
- Any ideas in the audience?

