Enhanced Gaussian Elimination in DPLL-based SAT Solvers

MATE SOOS

UPMC LIP6, PLANETE team INRIA, SALSA team INRIA

10th of July 2010

MATE SOOS (UPMC LIP6, PLANETE team

Gauss in SAT solvers

10th of July 2010 1 / 23

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Table of Contents

MATE SOOS (UPMC LIP6, PLANETE team

- B

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

B Results

Conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

DPLL-based SAT solvers

Solves a problem in CNF

CNF is an "and of or-s"

$$\neg x_1 \lor \neg x_3 \qquad \neg x_2 \lor x_3 \qquad x_1 \lor x_2$$

Uses $\mathsf{DPLL}(\varphi)$ algorithm

- $\textbf{0} \ \ \text{If formula} \ \ \varphi \ \text{is trivial, return SAT/UNSAT}$
- 2 Picks a variable v to branch on
- 0 v := true
- **③** Simplifies formula to φ' and calls $\mathsf{DPLL}(\varphi')$
- if SAT, output SAT
- **(**) if UNSAT, v := false
- Simplifies formula to φ'' and calls $\mathsf{DPLL}(\varphi'')$
- if SAT, output SAT
- If UNSAT, output UNSAT

Cryptographic problems

Crypto problems are given in ANF

 $0 = ab \oplus b \oplus bc$ $0 = a \oplus d \oplus c \oplus bd$ $0 = bc \oplus cd \oplus bd$ $0 = d \oplus ab \oplus 1$ Methods to solve ANF

Put into matrix, Gauss eliminate:

								aug	
Γ1	1	0	0	0	1	0	0	0]	
0	0	0	1	1	0	1	1	0	
0	1	1	1	0	0	0	0	0	
_1	0	0	0	0	0	0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	

- Onvert to CNF. Notice: it's same as above, but ab = a × b is included, and less info (rows) needed
- Other methods (e.g. F4/F5)

- 4 同 2 4 回 2 4 回 2 4

Gaussian elimination

Theory

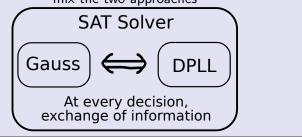
- Solving a Gaussian elim. problem with DPLL-based SAT solvers is exponentially difficult
- Even though Gaussian elimination is poly-time
- \rightarrow Theoretically, Gauss. elim in SAT solvers is useful

Practise

- Designers of SAT solvers have grown accustomed to solving worst-case exponential problems *really* fast
- But Gauss is different:

	Matrix size: $n imes n$, MiniSat time (s)											
	20	22	24	26	28	30	32	34	36	38		
	0.02	0.09	0.22	0.8	1.84	8.2	30.9	90.0	331.3	1539.9		
٩	Practic	al usef	ulness i	is still	elusive	2						
							• 1	□ ▶ ∢∂ ▶	★ E + ★ E	► ≣ •୨<		

MATE SOOS (UPMC LIP6, PLANETE team


Gauss and Crypto

The two approaches

- Only-Gauss approach problem: too many rows needed, too large matrix
- Only-SAT approach problem: Can't "see" the matrix, can't find truths from it

A hybrid approach

Executing Gauss. elim. at every decision step in the SAT solver, we can mix the two approaches

MATE SOOS (UPMC LIP6, PLANETE team

Outline

Context

- Cryptographic problems
- Gaussian elimination

2 Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

B Results

Conclusions

A B > A B >

mplementati	on									
	A	A-mat	trix			ſ	N-mat	trix		
										-
v10	v8	v9	v12	aug	v10	v8	v9	v12	aug	
[1	1	1	1	0]	[1	1	1	1	0]	
0	0	1	1	1	0	0	1	1	1	
0	1	0	1	1	0	1	0	1	1	
0	1	0	0	1	0	1	0	0	1	

- 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implem	entati	on										
	with		A-mat Issign	trix ed to	true	_		٦	N-ma	trix		_
	$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	v8 	$egin{array}{c} v9 \ 1 \ 1 \ 0 \ 0 \end{array}$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 1 1 0 0		$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c}v8\\1\\0\\1\\1\end{array}$	$v9 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 0 1 1 1	

< ロ > < 同 > < 回 > < 回 > < 回 > <

Implementa	tion										
W	A-matrix with $v8$ assigned to true						N-matrix				
v10 [1 [0 [0] Resulting x0		v9 1 0 0 se:	1	aug 1 1 0 0	$\begin{array}{c} v10\\ \begin{bmatrix}1\\0\\0\\0\end{array}\\\oplus v12\end{array}$	0	v9 1 1 0 0	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 0 1 1 1		

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implementation	
A-matrix with $v8$ assigned to true	N-matrix
$v10 v8 v9 v12 \text{aug} \\ \begin{bmatrix} 1 & - & 1 & 1 & & 1 \\ 0 & - & 1 & 1 & & 1 \\ 0 & - & 0 & 1 & & 0 \\ 0 & - & 0 & 0 & & 0 \end{bmatrix}$ Resulting xor-clause: v12 = fall	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MATE SOOS (UPMC LIP6, PLANETE team

- 3

< ロ > < 同 > < 回 > < 回 >

Row and Column Elimination by XOR — RCX

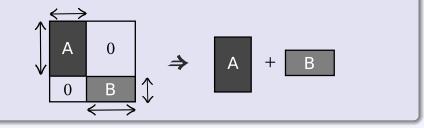
Example

• If variable *a* is not present anywhere but in 2 XOR-s:

 $a \oplus b \oplus c \oplus d = \texttt{false}$ $a \oplus f \oplus g \oplus h = \texttt{false}$

• Then we can remove *a*, the two XOR-s, and add the XOR:

 $f\oplus g\oplus h\oplus b\oplus c\oplus d=\texttt{false}$


Theory

- This is variable elimination at the XOR-level
- It is equivalent to VE at CNF level
- But it doesn't make sense to do this at CNF level:
 - \rightarrow results in far more (and larger) clauses
- For us it helps: removes 1 column (a) and one row from the matrix

Independent sub-matrixes

Reasoning

- Gaussian elimination is approx. $O(nm^2)$ algorithm
- Making two smaller matrixes from one bigger one leads to speedup
- If matrix has non-connected components, cutting up is orthogonal to algorithm output

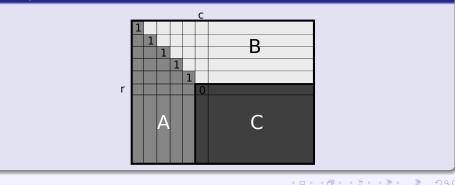
Independent sub-matrixes

Algorithm

Let us build a graph from the XOR-s:

- Vertexes are the variables
- Edge runs between two vertexes if they appear in an XOR
- Independent graph components are extracted

Advantages


- In case of 2 roughly equal independent sub-matrixes: $cnm^2 \rightarrow 2c'(n/2)(m/2)^2 = c'nm^2/4$
- Better understanding of problem structure:
 - E.g. number of shift registers in a cipher
 - Number of S-boxes in cipher
 - Problem similarities

Not treating parts of the matrix

Reasoning

- Let's assume the leftmost column updated is the c^{th}
- Let's assume the topmost "1" in this column was in row r
- ullet Then, the rows above r cannot have changed their leading 1

Example

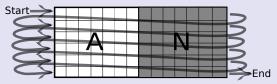
MATE SOOS (UPMC LIP6, PLANETE team

Auto turn-off heuristics

Reasoning

- Gauss. doesn't work well for all restarts
- If it doesn't bring enough benefits, switch it off
- Performance is measured by percentage of times confl/prop is generated

Qantitatively


- $\bullet \ \ If \ 2 \text{numGaussConfl} + \text{numGaussProp} < 0.05 \text{numGaussCalled}$
- \rightarrow Then turn it off
 - Conflict is preferred we can return immediately

(人間) とくほう (日) ほう

More efficient data structure

Data structure

- Bits are packed faster row xor/swap
- Augmented column is non-packed faster checking
- Two matrixes are stored as an interlaced continuous array
- $A[0][0] \dots A[0][n], N[0][0] \dots N[0][n], \dots A[m][0] \dots N[m][n]$

Advantages

- When doing row-xor both matrixes' rows are xor-ed
- When doing row-swap both matrixes' rows are swapped
- We can now operate on one continuous data in both operations

Gauss in SAT solvers

Outline

Context

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

3 Results

Conclusions

< ロ > < 同 > < 回 > < 回 >

Results overview

Before: "Extending SAT Solvers to Cryptographic Problems"

- Worked only on few instances
- Had to be tuned for each instance
- Gave approx. 5-10% speedup

Now: "Enhanced Gaussian Elimination in DPLL-based SAT Solvers"

- Matrix discovery is automatic
- Less tuning necessary turn-off is automatic
- Works on more types of instances
- Gives up to 30%-45% speedup

・ 同 ト ・ ヨ ト ・ ヨ ト

Bivium									
no. help bits	55	54	53	52	51	50			
no RCX + no Gauss	0.69	1.26	1.38	2.19	6.25	10.40			
RCX + no Gauss	0.65	0.89	1.30	2.36	5.76	8.87			
no $RCX + Gauss$	0.55	0.91	1.06	1.89	3.87	7.76			
RCX + Gauss	0.52	0.69	0.90	1.85	3.81	6.20			
Vars removed on avg	36.27	36.42	37.30	37.07	38.32	37.94			

Table: Avg. time (in sec.) to solve 100 random problems

Bivium									
no. help bits	54	53	52	51	50				
RCX	0.89	1.30	2.36	5.76	8.87				
Gauss + RCX	0.69	0.90	1.85	3.81	6.20				
		Triv	ium						
no. help bits	157	156	155	154	153				
RCX	66.57	86.42	146.17	261.75	472.27				
$Gauss{+}RCX$	40.57	68.16	84.13	146.35	259.07				

Table: Avg. time (in sec.) to solve 100 random problems

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ●

HiTag2									
no. help bits 15	14	13	12	11	10	9			
RCX 4.78 Gauss+RCX 4.76		30.70 29.03	76.44 77.19	233.61 220.64	719.86 701.46	1666.99 1636.77			
	Grain								
no. help bits	109		108	10	7	106			
RCX Gauss+RCX			91.29 59.58	540. 608.		1123.08 1133.75			

Table: Avg. time (in sec.) to solve 100 random problems

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Context

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

B Results

Conclusions

< ロ > < 同 > < 回 > < 回 >

Conclusions

Conclusions

- Gaussian elimination can bring benefits for specific applications
- Better understanding of the problem could be gained

Possible future work

- Automatic cut-off value finding
- Better heuristics to decide when to execute Gaussian elim.
- Add support for sparse matrix representation

Thank you for your time

MATE SOOS (UPMC LIP6, PLANETE team

Gauss in SAT solvers

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >