RFID standards ISO14443,ISO15693 and EPCGlobal

Mate Soos **INRIA**

May 19, 2008

Table of Contents

What standards

Overview Background

ISO/CEI 14443

Radio interface Anticollision

ISO/CEI 15693

Radio interface Anticollision

EPC class 1 gen 2

Radio Interface Anticollision

What standards

Overview Background

General overview

There are a multitude of standards for contactless ICs:

- ISO14443 for proximity contanctless cards
- ISO15693 for vicinity contactless cards
- ISO18000 set of standards for RFIDs
- EPCglobal Class 1 Gen 2 (=18000-6C)

Common terms& definitions

- PCD: Proximity Coupling Device(≈ reader)
- PICC: Proximity IC Card (\approx tag)
- Similarly VCD and VICC for Vicinity reader/tag
- Interrogator: stands for "reader" in EPCglobal standard
- UID: Unique ID
- Carrier: Base signal (e.g. 13.56Mhz). Reader modifies this signal to send data.
- Subcarrier: Signal on top of the base signal. Tag generates this signal to send data.

General background

- Anticollision is needed due to TDMA. Note: FDMA and SDMA are too expensive
- The reader always starts all data transfer. So if tag wants to send something, it needs to be queried first. E.g.: "Do you have something to send?" - "Yes, here you go"
- Anticollision is to select one tag. All further commands will be executed by this one tag

ISO/CEI 14443 Radio interface Anticollision

General background

- $\bullet \ \mathsf{Proximity} \ \mathsf{card} \ \to \approx 10 \mathsf{cm} \ \mathsf{max} \ \mathsf{range}$
- Usually uses the 7810 ID-1 card form factor (i.e. credit card)
- Quite a lot of power on card
- Used in transportation systems, building access, Visa paypass
- Sometimes integrates the 7816-* (i.e. smart card) standards

Radio interface - Type A

PCD→PICC:

Carrier: 13.56Mhz

Modulation ASK 100%

Coding: Modified Miller

Bandwidth: 106kbit/s→847kbit/s

PICC→PCD:

Load modulation

• Subcarrier: $f_c/16 \rightarrow f_c/128$

Coding: OOK, Manchester

Bandwidth: 106kbit/s→847kbit/s

Radio interface - Type B

PCD→PICC:

Carrier: 13.56Mhz

Modulation: ASK 10%

Coding: NRZ

Bandwidth: 106kbit/s→847kbit/s

PICC→PCD:

Load modulation

• Subcarrier: $f_c/16 \rightarrow f_c/128$

Coding: BPSK, NRZ-L

Bandwidth: 106kbit/s→847kbit/s

Anticollision - Type A

- Reader issues SELECT command with 0 known bits
- All tags respond with their UID
- $oldsymbol{0}$ Tags clash at bit position C
- Reader decides to explore C + 1 = 0 or C + 1 = 1
- **1** Reader issues SELECT command with C+1 bits
- Goto 3
- 1 If no clash: Issue SELECT with full UID of tag

Anticollision - Type B

- lacktriangle Reader issues REQB with S slots
- 2 All tags pick a slot randomly
- Reader issues SLOT-MARKER commands to mark the slots
- Tag sends ATQB with PUPI inside
- Reader sends ATTRIB (to select it) or HLTB (to halt it)
- If tags clashed, reader starts again with more slots

ISO/CEI 15693 Radio interface Anticollision

General background

- ullet Vicinity card ightarrow pprox 1-1.5m max range
- Usually uses the 7810 ID-1 card form factor (i.e. credit card)
- Has much less power so less powerful CPU
- Usually only has some RAM and memory manupulation commands

Radio interface

VCD→VICC:

• Carrier: 13.56Mhz

Modulation: ASK 10% or 100% (VICC knows both)

Coding: PPM, "1 out of 4" or "1 out of 256"

Bandwidth: 26,48 kbits/s or 1.65kbit/s

VICC→VCD:

• Subcarrier: Singe: $f_c/32$

• Single: $f_c/32$

• Dual: $f_c/28$, $f_c/32$

Coding:

• One subcarrier: (subcarr)(unmodulated time)=0, reverse=1

Two subcarrier: (subcarr1)(subcarr2)=0, reverse=1

Bandwidth:

Low: ≈6.6kbit/s

• High: ≈26kbit/s

Anticollison

- lacktriangledown Reader issues inventory request with S slots
- 2 Tag sends its inventory response with UID
- Reader issues EOF to signal next slot

Two different modes after anticollision:

- Addressed: 1) Select 2) Issue commands
- Non-addressed : Each command must be individually addressed (i.e. contain the UID)

ISO 15693 physical layer

VICC→VCD:

- Subcarrier:
 - Single: $f_c/32$
 - Dual: $f_c/28, f_c/32$
- Coding:
 - One subcarrier: (subcarr)(unmodulated time)=0, reverse=1
 - Two subcarrier: (subcarr1)(subcarr2)=0, reverse=1
- Bandwidth:
 - Low: \approx 6.6kbit/s
 - High: ≈26kbit/s

EPC class 1 gen 2 Radio Interface Anticollision

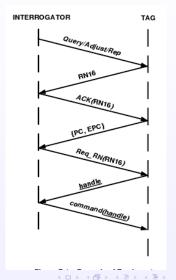
General background

- Most recent standard, to be on all goods
- Works up to a couple of meters
- Very sophisticated inventorying, session management, outlier singulation, etc.
- Multiple physical standards supported (probably to get around IP)

EPC physical layer

Interrogator→tag:

- Carrier: 860-960Mhz (depending on local regulations)
- EU:865.5-867.6Mhz, US: 902-928Mhz, divided into channels (200kHz, 500kHz) – yes, FDMA is possible!
- Modulation: ASK (DSB-ASK,SSB-ASK, PR-ASK tag undestands all)
- Encoding: PIE
- Bandwidth: 26.7-128kbit/s


$Tag \rightarrow interrogator:$

- Modulation: ASK or PSK (– reader understands all)
- Encoding: reader decides
 - FM0 baseband (40-640kbit/s)
 - Miller of a subcarrier (5-320kbit/s)
 - Data rate depends on Divide Ratio and TRcal, selected by reader QUERY command

hat standards ISO/CEI 14443 ISO/CEI 15693 EPC class 1 gen 2

EPC Anticollision

- Reader first SELECTs who will take part in inventorying: session management, mask/truncate EPC, etc.
- Reader issues QUERY to do slotted ALOHA:
 - On picture: tag selected slot 0
 - RN16=random number

Thank you for your time!

Any questions?

