
Analysing the Molva and Di Pietro Private
RFID Authentication Scheme

Mate Soos

INRIA Rhône-Alpes

Abstract. The private RFID authentication scheme by Molva and
Di Pietro uses a non-cryptographic element for private identification.
Through an exhaustive analysis of this element we have found multiple
unintended features, flaws and attack vectors in the scheme. Based on
this analysis we describe a set of design flaws and offer some remedies for
them.

1 Introduction

RFIDs, also called tags, are small electronic devices that are currently used
in the supply chain to monitor the movement of goods. They can be remotely
read by an RFID-reader by use of radio waves, without line-of sight. RFIDs
are mostly passive, that is, they are powered by the reader’s energy field. This
gives them a very long lifespan and also makes them very cheap. Cheapness
and convenience are however problematic when it comes to privacy – nobody
wants to be tracked cheaply and conveniently by anyone, especially by use of
a device that is tiny and uses a mode of communication that cannot be sensed
by human beings. Therefore, privacy is a huge concern for RFIDs. Once the
privacy problem is solved, authentication is a natural next step: authenticating
using a privacy-preserving tag would be extremely convenient: key-chains would
be a thing of the past. These dreams are however difficult to realise due to the
hardware constraints of the tags: since tags are tiny, cheap, and must consume
very little power, they require innovative protocol designs to overcome these
difficulties.

In this paper we examine a protocol by Refik Molva and Roberto Di Pietro
[1] that tries to solve the problems mentioned above with an ambitious protocol.
This protocol is part of a class of protocols we call non-cryptographic, that is, it
relies on an innovative approach to replace a function that is normally provided
by a standard cryptographic algorithm. In this class of protocols are for instance
the HB+[2], and LMAP [3]. These non-cryptographic protocols are notorious for
being broken sooner or later and mended only to be broken again. This happened
with HB+ [4] which produced HB++ [5] which got broken [6] or with LMAP [7]
which produced M2AP [8] which got broken [9].

Organisation

This paper is structured as follows. In Section 2 we present the protocol and in
Section 3 we analyse one of its function’s unintended behaviour. In Section 4



we analyse the private identification part of the protocol then in Section 5 we
show a theoretical passive and an practical active attack against it. Finally, in
Section 6 we present a list of design flaws and their remedies and in Section 7 we
conclude our paper.

2 A short summary of the Molva - Di Pietro scheme

The scheme of Molva and Di Pietro [1] is a private RFID mutual authentication
scheme. As such it solves three problems at the same time for RFID tags: it
privately indicates the tag ID to the reader, it authenticates the tag to the reader
and authenticates the reader to the tag. For clarity of explanation, we will make
a clear distinction between these three parts.

There are n tags Ti in the system, each of which is configured with a unique
key ki which serves as the tag ID and the key at the same time. This key is
used as a bitvector with ki[x] representing the xth bit of ki. Each reader also has
a unique IDj . At system initialisation, each reader Rj is configured with the
reader-specific key of each tag, ki,j = h(ki||IDj ||ki), where h() is a secure hash
function available both on the tag and the reader.

Private identification

For private identification the protocol relies on the function DPM . The input
to DPM is l bits where l is divisible by 3, and the output is one bit. DPM is
defined as:

DPM(x) =
l/3⊕
i=0

M(x[3i], x[3i+ 1], x[3i+ 2]) (1)

where M is the majority function: its input is 3 bits, and its output is one bit.
M decides whether there are more 1-s in its input is than 0-s and returns the
value 1 or 0 accordingly.

The private identification part of the protocol is as follows:

1. Rj sends IDj to the tag
2. Ti computes ki,j = h(ki||IDj ||ki). It then generates q l-bit random nonces,
rp (p = 1 . . . q). It then sends q αp-s where αp = rp ⊕ ki,j and it sends a q-bit
long vector V that is set up as V [p] = DPM(rp) to the reader

3. Rj computes DPM(αp ⊕ ki,j) for all keys ki,j it possesses and checks it
against V [p]. This is called the Lookup Process. The key ki,j that fits on all
pairs (αp, V [p]), p = 1 . . . n is the tag suspected of sending the packets

At the end of the identification part, the reader suspects which tag it is talking
to. The authors explain in detail how large q (the number of pairs sent) should
be so that with very high probability only the correct key will fit on all pairs
(αp, V [p]), p = 1 . . . n.



Tag authentication

During tag authentication the reader would like to make sure that it is indeed
talking to tag Ti. This is important since a malicious tag could simply replay an
instance of the private identification part of the protocol to the same reader and
the reader would not be able to differentiate between the two tags.

The tag authentication part of the protocol is as follows:

1. Rj sends a nonce nj to the tag
2. Ti computes and sends ω = h(ki,j ||nj ||r1||ki,j) to the reader
3. Rj computes r1 = α1 ⊕ ki,j and checks ω against h(ki,j ||nj ||r1||ki,j). If they

match, the tag is authenticated

Reader authentication

After tag authentication the reader authenticates itself to the tag:

1. Rj computes r1 = α1 ⊕ ki,j and sends h(ki,j ||r1||ki,j) to the tag.
2. Ti computes h(ki,j ||r1||ki,j) and checks it against the received hash. If they

match, the reader is authenticated

3 The DPM function

The function DPM is such that if an even number of majority functions’ outputs
are inverted, the output is not inverted. This property of the DPM function will
have two unfortunate consequences: key- and pair-equivalences, which we will
detail in this section.

3.1 Key equivalences

Let us divide the key ki,j into blocks of 3 bits, which we will simply call key blocks
from now on. If an even number of key blocks are inverted, the resulting key will
be indistinguishable by the reader from the original key using only the (αp, V [p])
pairs. This is because V [p] = DPM(αp⊕ki,j) = DPM(αp⊕ki,j⊕inversions) and
so the result of the Lookup Process will not depend on whether the blocks were
inverted or not. One such pair of key-equivalents is ki,j =[001 000 100]≈[110
000 011].

Key equivalences mean that any key of size l belongs to a key-equivalence
group of size

∑b(l/3)/2c
i=0

(
l/3
2i

)
= 2l/3−1, i.e. in a keyspace of 2l there are 2l−l/3+1

key-equivalence groups (or key-eqgroups for short). Keys in a key-eqgroup are
equivalent if the reader only looks at the (αp, V [p]) pairs. Naturally, if the reader
checks ω, each of these tags is distinguishable from one another. However, as key
sizes of at least 80 bits must be used to thwart brute-forcing of keys, the number of
possibilities that could be left after the pairs are processed is 281/3−1 ≈ 7 million,
which is impossible for the reader to check, since executing a hash function this
many times is too time-consuming for a quick identification session.



Under normal conditions, the keyspace (2l) is extremely sparsely populated –
there may be less tags in the whole system than the size of one such key-eqgroup.
However, care must be taken to have a very low ratio of n : 22l/3+1, otherwise the
hash h(ki||IDj ||ki) could produce many keys that are in the same key-eqgroup for
a certain reader (i.e. for a certain IDj). This can be a problem, as there might be
a time-limit for the reader to find which tag it is talking to within the key-eqgroup.
We can calculate the chance that for a random reader IDj there will be at least
one key-eqgroup with more than one tag inside as 1− (1− n/22l/3+1)n−1. For
example, for n = 107, l = 81, this probability is 0.003, which means that if there
are 1000 readers deployed, then there is a 1− (1− 0.003)1000 ≈ 95% chance that
at least one reader will have at least one key-eqgroup with more than one tag
inside.

Key-eqgroups also mean that the attacker’s keyspace is limited to 2l−l/3+1 if
the attacker is only interested in the key-eqgroup (=anonymity group) the tag
belongs to. If the attacker is interested in the exact tag, it can try to do 2l/3−1

hash operations to find ki,j using n, r1 and ω of a session. This is feasible even for
l = 99 and h =SHA-1: the key-eqgroup would be 2l/3−1 = 232 = 4 billion large
and a Xeon quad-core can do about 4 million SHA-1 operations per second, so in
less than half an hour would find the key ki,j . Let us note that the hash function
on the tag would be more simple than SHA-1 due to hardware constraints, and
would be much easier to brute-force.

3.2 Pair-equivalences

The design of the DPM function also implies (αp, V [p]) pair-equivalences: for
multiple different pairs the same keys are found not to fit (i.e. pruned) during
the Lookup Process.

If V [p] = DPM(αp⊕ ki,j) then for any α′p that has an even number of blocks
inverted, V [p] = DPM(α′p ⊕ ki,j) will also hold. Therefore the Lookup Process
will prune the same keys for these pairs. For example [010 001]-0≈[101 110]-0

If an odd number of blocks are inverted in αp then an odd number of blocks in
r must have been inverted, so V ′[p] = DPM(r′) = V [p]. Therefore, the Lookup
Process will prune the same keys for these pairs as well. For example [100
000]-1≈[011 000]-0.

The property of pair-equivalences implies that the Lookup Process is not
running at maximum efficiency since the possibility that two equivalent r-s are
produced by the tag during identification is higher than with a DPM function
that does not have this property.

3.3 The effect of equivalences

It is important to note that during the Lookup Process both pair- and key-
equivalences are acting in tandem, and have two different effects: the first slows
down the pruning of the keyspace (ki,j-s stored in the reader), and the second
does not let the pruning go beyond a certain point.



4 Private identification

In this section we examine the identification part of the protocol from multiple
angles. First, we examine the Lemmas it depends on, then investigate the number
of pairs needed for it, and finally we make some practical observations regarding
its bandwidth need.

4.1 Observations about Lemma 2

In the original paper, Lemma 3 states that for a randomly chosen r, the chance
that DPM(r) = 1 is 0.5, and the chance that DPM(r) = 0 is also 0.5. This
means that given a set of tags and their unique random keys, a randomly chosen
(αp, V [p]) pair will on average fit on half of the keys. Using this lemma, the
authors conclude in Lemma 2 that given q randomly chosen pairs, the probability
that at least one key will survive out of n random keys is less than n(1/2)q. For
this to hold, the distribution of surviving keys should have been random after one
pair. However, the distribution of the surviving keys is not random: for example,
two identical pairs will prune the keyspace only once.

4.2 The true number of (αp, V [p]) pairs needed

We will calculate δq, the additional number of (αp, V [p]) pairs needed for the
reader to identify a key-eqgroup with a probability of at least 99% given that
there are n′(≤ n) key-eqgroups among the tags in the system.

Since the distribution of key-eqgroups is not random after one or more
(αp, V [p]) pairs, we will need to investigate whether we need to compensate
for this with extra pairs. For the moment, let us use Lemma 2 to calculate an
estimate of the number of pairs needed. The conclusion of Lemma 2 is that for an
incorrect identification probability ε ≤ 2−r, the number of pairs sent, q, must be
at least r+ log(n′) 1. As an example, for the parameters n′ = 106 and ε ≤ 0.01, q
must be at least 27. We will now investigate how large δq, the additional number
of pairs needed should be to compensate for the fallacy of Lemma 2.

Redundant pairs We call redundant pairs a set of (αp, V [p]) pairs that are not
equal in the sense of pair-equivalences, but as a set form a tautology: removing
one or more pairs from the set will not reduce the information content of the set.
One such set is for instance:

αp V [p]
011 100 0
011 111 1
010 100 0
010 111 1

1 The authors meant log to be log2



In this set, given any 3 of the 4 pairs the 4th pair can be deduced. In other words,
the information content of these 4 pairs is only 3 pairs. Theoretically determining
the occurrence probabilities of redundant pairs is out of the scope of this paper.
Instead, we ran some tests to observe what is the practical occurrence ratio of
them for different keysizes and different number of non-equivalent pairs, which
we present in Fig. 1.

Fig. 1. Average number of redundant pairs within q non-equivalent pairs for different
keysizes. As the number of pairs increases, the occurrence rate of redundant pairs
increases at an exponential rate

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

6
8

10
12

14
16

18
20 22 2

4
6

8
10

12
14

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Keysize (l)

Number of
pairs (q)

Avg. no. of
redundant
pairs (z)

Using a logarithmic (ln) scale for the axis z, the equation 9.62l−16.11q+24z+
42.18 = 0 describes the plane. Substituting q = 27 and l = 81 into this equation
yields z = −16.1, i.e. the occurrence rate for these parameters is e−16.1 ≈ 10−7.
This is so small that it does not need to be compensated with δq. However, for
larger tag populations, the occurrence rate can be very high. For example, for 109

tags and consequently q = 40 the occurrence rate jumps to 10−4, which cannot
be ignored and must be compensated with a δq strictly larger than zero.

Pair-equivalents during identification The chance that among q random
(αp, V [p]) pairs there will be at least one that is a pair-equivalent is as follows.
There are 22l/3 pair-eqgroups, so the chance that at least two pairs will be from
the same pair-eqgroup among q pairs is

Prepeat ≤
(
q

2

)
2−2l/3 (2)

For l = 81, n = 106, ε ≤ 0.01 and q = 27, Prepeat ≤
(
27
2

)
2−54 ≈ 2 · 10−12. This

probability is so small, that practically this will never occur and so it does not
need to be compensated for with additional pairs.



4.3 The bandwidth needed in a common setup

Let us measure the total bandwidth cost of the protocol: for an even l-bit security
goal, we need to set |ID| = l, |n| = l, |ω| = 2l, and |h(·)| = 2l where |x| means the
bitlength of x. The protocol will use l bits to send IDj , ql bits for the αp-s, q bits
for V , and l + 2l + 2l bits for the two-way authentication. The total bandwidth
cost is thus

B = l + ql + q + l + 2l + 2l = (6 + q)l + q bits (3)

In the case of l = 81 (which the authors seem to suggest through the use of
a 160-bit hash function), n′ = 106, Pfind ≈ 0.99, B is 2667 bits, which can be
thought of as prohibitively large.

4.4 Implementation of the Lookup Process

Although the original paper mentions the processing overhead of the reader and
concludes that it is O(n log n), we investigated the constant hiding behind the big
O by implementing the Lookup Process on a Xeon E5345@2.33GHz computer. To
speed up the calculations, we used all practical optimisations and programming
techniques available to us, such as pure binary operations, loop-unrolling and
memory bandwidth minimisation. The results are shown in Table 1.

Table 1. This table shows the average time and RAM required by the Lookup Process
to find one tag. The Lookup Process was running on a Xeon E5345@2.33GHz with all
optimisations other than assembly-level coding. Pfind was set to 0.99 and keylength
was 81 bits. As the number of tags in the system increases, the time it takes to identify
the tag increases in an almost linear manner. Since memory usage mainly consists of
storing tag keys, it increases linearly with the number of tags in the system

Number of tags 106 107 108

Time (s) 0.1 1.1 12
Memory (MB) 9.6 96 965

It is clear from Table 1 that even if the number of tags in the system is only
106, the reader would need to be very powerful – a hand-held reader rarely has
the speed of a 2.33GHz Xeon processor. For larger tag populations, the RAM
requirement would also become a problem. Therefore, it is more pertinent to
speak about backend systems that process all incoming identifications and return
the tag ID in batch mode. However, if backend systems must be used, then
per-reader IDs are not a possibility and per-backend IDs must be used. Thus
information confinement – one of the main goals of the paper – cannot be fully
achieved.



5 Retrieving ki,j

In this section we present two attacks that find ki,j : a simple passive brute-force
attack and a fast and efficient man in the middle attack. Since the key of the
tag is always masked with the IDj of the reader through ki,j = h(ki||IDj ||ki),
the attacker will only be able to break the privacy of the tag when the tag is
communicating with the same reader. Since both tag-to-reader and reader-to-tag
authentication only requires the knowledge of ki,j , retrieving it allows the attacker
to both authenticate himself to the original reader as a legitimate tag, and to
authenticate himself to the original tag as a legitimate reader.

5.1 Brute-force passive attack

The authors strangely forget to mention, indeed they might have overlooked, the
simple brute-force passive attack against the identification part of the protocol, an
attack vector that all schemes must exhibit that are not information theoretically
secure. Naturally, the identification part of the protocol cannot be information
theoretically secure since it sends a secure message (the ID of the tag) possibly
infinite number of times while sharing just a few bits of secret information with
the reader.

The attack simply executes the Lookup Process with all possible 22l/3+1 key-
eqgroups to find the key-eqgroup of ki,j . Given different non-redundant (αp, V [p])
pairs, the number of possible keys is reduced by factor of 2 by each pair. Using
the same formula as in Section 4 and setting r = 0, n′ = 22l/3+1 we find that we
need 2l/3 + 1 non-equivalent non-redundant pairs to mount the attack.

We have implemented the attack and found that it performs as detailed in
Table 2 on a Xeon E5345@2.33GHz CPU. The attack simply tries all key-eqgroups
on the minimum amount of (αp, V [p]) pairs needed. Due to the time required
to execute the algorithm for large keysizes, it can only be used to brute-force
a key that the attacker has some information about. Using some supporting
information, the brute-force attack can be used to fill out the gaps in (i.e. compute
the unknown parts of) the key.

Table 2. This table shows the performance of our brute-force attack implementation
on a Xeon E5345@2.33GHz CPU. As the key size increases, the time required to break
the privacy of the tag increases at an exponential rate

Keysize (bits) 27 30 33 36 39 42 45

Time 0.38s 2.9s 27.2s 209s 1462s 13003s 76738s

Once the key-eqgroup of ki,j is found, the attacker can simply try to execute
the hash function h() implemented in the tag to try each of the 2l/3−1 combina-
tions left against an ω response to find the exact ki,j . As discussed in Section 3.1
this should not be difficult even for l = 99 and h =SHA-1.



5.2 Man-in-the-middle attack

The man-in-the-middle (or MiM for short) attack gains information about ki,j

based on the success or failure of the authentication. Since success or failure can
be represented in one bit, at each authentication attempt the attacker will learn
exactly one bit of information. The attack exploits that with the exception of
α1, none of the αp-s are authenticated: if an attacker modifies α2 into α′2 and
the Lookup Process still finds the key ki,j , then DPM(ki,j ⊕ α′p) = V [p], so he
either managed not to invert the output of any of the majority functions (M -s)
in the DPM , or he managed to invert of an even number of them. However, if
DPM(ki,j ⊕ α′p) = V [p], the authentication will fail since the reader will fail to
find the key ki,j during the Lookup Process, in which case he can be sure that
he must have inverted the output of an impair number of majority functions in
the DPM .

The attacker will take the simplest approach to modifying α2: he will try
to invert one majority function’s output. As a simple example, let us consider
the block α2[x . . . x + 2] = 000. In this case M(ki,j [x . . . x + 2] ⊕ α2[x . . . x +
2]) = M(ki,j [x . . . x + 2]), so this block’s M will depend solely on the key bits
ki,j [x . . . x + 2]. Let us now invert the x+2nd bit of α2: M will not change
if and only if ki,j [x] = ki,j [x + 1], since then no matter what ki,j [x + 2] is,
M = ki,j [x] = ki,j [x + 1]. However, M will change if ki,j [x] 6= ki,j [x + 1] since
then the majority is decided by ki,j [x + 2] ⊕ α2[x + 2], which the attacker
just inverted. Therefore, by inverting the x+2nd bit of α2, and observing the
authentication, the attacker can conclude whether ki,j [x] = ki,j [x+ 1] or not.

Reasoning this way, all possible α2 blocks will lead to a conclusion: see Table
3 for all the conclusions that can be drawn given any α2 block and an inversion
at either the 2nd or the 3rd bit of the block. From the attack’s point of view a
block in α2 behaves the same as the inversion of the same block (i.e. 000≈111),
so only one of the two is listed.

Using Table 3 the attacker only needs two authentication sessions per key
block to narrow down the possible key-combinations to 2l/3. At this point, he
will have two possibilities for each key block. It is sufficient for the attacker to
simply try the recorded set of (αp, V [p]) pairs on one of the 2l/3 combinations. If
at least one pair does not match, then he simply needs to invert the first block to
recover the key-eqgroup of the tag. The whole process thus takes 2 authentication
sessions per key block, and less than one millisecond of processing. For l = 81
this means the privacy can be broken to a key-equivalence level in a mere 54
protocol sessions.

The MiM attack can be used in tandem with the brute-force attack. If the
attacker is willing to invest some time into breaking the scheme, he can use the
MiM attack to learn some information about the first x bits of the key, and then
use the brute-force attack to learn the rest of the l − x bits. As long as l − x
is less than 39, this should take very little time for the attacker, and would let
him use less active rounds: in the case of l = 81, instead of the normal 54 active
rounds needed, he would only need 30 active rounds and a couple of minutes to
find the key-eqgroup of ki,j .



Table 3. This table shows the conclusions that can be drawn by actively modifying an
ongoing protocol session: the attacker needs to invert one bit of α2 at a block’s 2nd or
3rd position and observe the outcome of the protocol. If the tag does not get accepted
as authentic, then he can deduce the information that is present in the row marked
with ×, if the tag does get accepted he can deduce the information that is present in
the row marked with X

Inverted Original α2[x . . . x+ 2] block
bit Auth 000 001

α2[x+ 2] X ki,j [x] = ki,j [x+ 1] ki,j [x] = ki,j [x+ 1]
α2[x+ 2] × ki,j [x] 6= ki,j [x+ 1] ki,j [x] 6= ki,j [x+ 1]
α2[x+ 1] X ki,j [x] = ki,j [x+ 2] ki,j [x] 6= ki,j [x+ 2]
α2[x+ 1] × ki,j [x] 6= ki,j [x+ 2] ki,j [x] = ki,j [x+ 2]

Original α2[x . . . x+ 2]
010 100

α2[x+ 2] X ki,j [x] 6= ki,j [x+ 1] ki,j [x] 6= ki,j [x+ 1]
α2[x+ 2] × ki,j [x] = ki,j [x+ 1] ki,j [x] = ki,j [x+ 1]
α2[x+ 1] X ki,j [x] = ki,j [x+ 2] ki,j [x] 6= ki,j [x+ 2]
α2[x+ 1] × ki,j [x] 6= ki,j [x+ 2] ki,j [x] = ki,j [x+ 2]

To find the exact ki,j of the tag, the attacker would need to perform the same
actions as in the last stage of the brute-force passive attack, i.e. execute the
hash function h() for each of the 2l/3−1 remaining combinations and compare it
against an ω response. As discussed in Section 3.1 this should not be difficult
even for l = 99 and h =SHA-1 – it would take less than an hour on a desktop
PC.

6 Design flaws and their remedies

It is very difficult to design security protocols for RFIDs since the resources
available on this platform are extremely limited. Some security properties must
always be sacrificed in order to fit the security functions on the tag. However,
we believe that the scheme being analysed is not only imperfect due to the
limitations of the platform, but it also exhibits limitations that are due to design
flaws. In this section we will list a set of design flaws exhibited by the scheme
and then propose some modifications to overcome the problems detailed.

6.1 Design flaws

We have found the following list of design flaws during our analysis of the protocol:

– Identification and authentication boundaries should have been clearly de-
fined. Had identification and authentication been designed and analysed
independently, many of the shortcomings described could have been averted



– Identification and authentication keys should have been generated differently.
Had this been the case, the attacks presented would only have recovered the
identification key and so would have been restricted to breaking the privacy.
A simple difference between the generation of the two ki,j-s would have been
enough

– Given that the identification was not cryptographically secured, the integrity
of the data exchanged during identification should have been authenticated
during authentication. It is clear that the identification was not cryptograph-
ically secured since it only used a xor and a majority function to do its
work

– The choice of the DPM function is not clearly motivated and its design is
not analysed in a separate paragraph. Such a crucial function of a scheme
should have been fully analysed

6.2 Remedies for the problems found

We believe that so-called “lightweight cryptography” as in home-brewn crypto-
graphy-like functions is not the way forward. A function used in RFID protocols
should either be a well-analysed cryptographic function like AES, DES, the
upcoming Grain etc. or it should not attempt to be a cryptographic function
at all, instead it should be a standard hard problem whose attack vector is
well-known and its hardness can be tested accordingly. In the case of crypto-
functions, the attacks on the chosen well-known crypto-functions apply. In the
case of standard hard problems, the standard well-known attack vectors apply.
In both cases a hard limit can be calculated regarding the speed of breaking.
Naturally, we expect the solution based on standard hard problems to be less
secure, but let us remember that security is a relative term and in case of RFIDs
it might mean that an RFID tag’s certain property cannot be broken within its
lifetime, which may be as short as one day.

Given our reasoning above, there are two possible ways of mending the
protocol. One is to use a standard cryptographic primitive such as hash-chains
for private identification as in [10], or to use a standard encryption function and
key-trees as in [11]. The other way of mending the protocol is to use a standard
hard problem such as HB+’s Learning Parity with Noise [2].

7 Conclusions

During our analysis of the Molva-Di Pietro scheme we have uncovered multiple
flaws, among them tag identification ambiguity, possibility of active attack and
unanticipated processing slowness. We have fully analysed the scheme from
multiple viewpoints and have found a multitude of obscure features such as
pair-equivalences. We presented a list of detailed design flaws that we have found
during our analysis and finally, we have given a set of improvement ideas.



References

1. Pietro, R.D., Molva, R.: Information confinement, privacy, and security in RFID sys-
tems. In: Proceedings of the 12th European Symposium On Research In Computer
Security. (September 2007) 187–202

2. Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In
Shoup, V., ed.: CRYPTO’05. Volume 3126 of LNCS., IACR (August 2005) 293–308

3. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J., Ribagorda, A.:
LMAP: A real lightweight mutual authentication protocol for low-cost RFID tags.
Proceedings of RFIDSec’06 (July 2006)

4. Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB+ - a provably
secure lightweight authentication protocol. In: IEE Electronic Letters 41, 21. (2005)
1169–1170

5. Bringer, J., Chabanne, H., Emmanuelle, D.: HB++: a lightweight authentication
protocol secure against some attacks. In: IEEE SecPerU 2006, IEEE (June 2006)

6. Gilbert, H., Robshaw, M.J., Seurin, Y.: Good variants of HB+ are hard to find. In:
Financial Cryptography, Springer (January 2008)

7. Bárasz, M., Boros, B., Ligeti, P., Lója, K., Nagy, D.: Breaking LMAP. In: RFID-
Sec’07. (July 2007) 69–78

8. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J., Ribagorda, A.:
M2AP: A minimalist mutual-authentication protocol for low-cost RFID tags. In:
UIC06. Volume 4159. (September 2006) 912–923

9. Bárász, M., Boros, B., Ligeti, P., Lója, K., Nagy, D.A.: Passive attack against the
M2AP mutual authentication protocol for RFID tags. In: RFID 2007 – The First
International EURASIP Workshop on RFID Technology. (September 2007)

10. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: Ubicomp 2004, Workshop Privacy: Current Status and
Future Directions. (September 2004)

11. Buttyán, L., Holczer, T., Vajda, I.: Optimal key-trees for tree-based private
authentication. In: PET 2006. (June 2007) 332–350


