Extending SAT Solvers to Cryptographic Problems

Mate Soos, Karsten Nohl, Claude Castelluccia
INRIA Rhône-Alpes, University of Virginia

July 1, 2009

Table of Contents

(1) Background

- DPLL-based SAT solvers
- Stream ciphers
(2) Adapting the SAT solver
- XOR-support
- Gaussian elimination
- Dynamic behaviour analysis
(3) Adapting the cipher representation
- Logical circuit representation
- Representation of non-linear functions
(4) Implemented attacks
- Crypto-1 and HiTag2
- Bivium

Outline

(1) Background

- DPLL-based SAT solvers
- Stream ciphers
(2) Adapting the SAT solver
- XOR-support
- Gaussian elimination
- Dynamic behaviour analysis
(3) Adapting the cipher representation
- Logical circuit representation
- Representation of non-linear functions

4) Implemented attacks

- Crypto-1 and HiTag2
- Bivium

DPLL-based SAT solvers

- A tool to solve a problem given in clauses ('and' of 'or'-s)
- Performs unit propagation
- Picks a variable to branch on, works on the two sub-problems
- Optimisations:
- learning
- non-chronological backjumping
- restarting
- variable choice
- implementation details
- We used MiniSat2

Stream ciphers

- Uses a set of shift registers
- Shift registers' feedback function is either linear or non-linear
- Uses a filter function to generate 1 secret bit from the state
- Working: clock-filter-clock-filter. . . = feedback-filter-feedback-filter...

Outline

(1) Background

- DPLL-based SAT solvers
- Stream ciphers
(2) Adapting the SAT solver
- XOR-support
- Gaussian elimination
- Dynamic behaviour analysis
(3) Adapting the cipher representation
- Logical circuit representation
- Representation of non-linear functions
(4) Implemented attacks
- Crypto-1 and HiTag2
- Bivium

Problem with XOR-s

The truth

$$
a \oplus b \oplus c
$$

must be put into the solver as
$a \vee \bar{b} \vee \bar{c}$

$$
\begin{equation*}
a \vee b \vee c \tag{4}
\end{equation*}
$$

(3)

$$
\begin{align*}
& \bar{a} \vee \bar{b} \vee c \tag{1}\\
& \bar{a} \vee b \vee \bar{c} \tag{2}
\end{align*}
$$

So, it takes 2^{n-1} clauses to model an n-long XOR

Problem with XOR-s

To model the truth

$$
x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8}
$$

the following truths are put into the SAT solver (cutting)

$$
\begin{aligned}
& \overline{y_{1}} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \\
& \overline{y_{2}} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8}
\end{aligned} \quad y_{1} \oplus y_{2}
$$

Problems: still too long, extra vars

Solution to XOR-s

Xor-clauses [Massacci00Taming]:

$$
a \oplus b \oplus c
$$

represents all the regular clauses
$a \vee \bar{b} \vee \bar{c}$

$$
\begin{align*}
& \bar{a} \vee \bar{b} \vee c \tag{1}\\
& \bar{a} \vee b \vee \bar{c} \tag{3}
\end{align*}
$$

and changes appearance to match the regular clause that is the most pertinent to the situation. Gives this changed appearance to the analyze() method

Uses a watched variable scheme instead of a watched literal scheme Gain:

- $2.2 x$ in speed
- order of magnitude in memory

Gaussian elimination

- Gaussian elimination is an efficient algorithm for solving systems of linear equations
- XOR-clause is a linear equation \rightarrow use Gauss elim. to solve the system of XORs-clauses
xor-clauses
with $v 8$ assigned to true

$v 10$	$v 8$	$v 9$	$v 12$	const						
$\left[\begin{array}{cccc\|c}1 & - & 1 & 1 & 1 \\ 0 & - & 1 & 1 & 1 \\ 0 & - & 0 & 1 & 0 \\ 0 & - & 0 & 0 & 0\end{array}\right]$					\quad	$v 10$	$v 8$	$v 9$	$v 12$	const
:---:	:---:	:---:	:---:	:---:						
$\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$										

- make temp. XOR-clause out of the interesting clauses found
- given prop. row 3, save temp. XOR-clause for a short while
- given a conflict, give it to analyze() and delete it

Gaussian elimination results

Gaussian elimination until depth
No. of propagations
(\sim search space)

Gaussian elimination until depth

Visual representation

It's hard to follow how a solver operates. So we implemented dynamic behaviour analysis

Figure: Graphviz visualisation of an example search for the Crypto-1 cipher's states. The tree is read from left to right, top to bottom: the left- and bottommost pentagon is the first conflict clause, the right- and bottommost circle is the satisfying assignment.

Detailed statistics

Statistics generated:

- No. times variable branched upon
- Number of conflicts made by clause groups
- Propagation depth order of clause groups
- Avg. conflict depth order of clause groups

Outline

(1) Background

- DPLL-based SAT solvers
- Stream ciphers
(2) Adapting the SAT solver
- XOR-support
- Gaussian elimination
- Dynamic behaviour analysis
(3) Adapting the cipher representation
- Logical circuit representation
- Representation of non-linear functions
(4) Implemented attacks
- Crypto-1 and HiTag2
- Bivium

Logical circuit representation

Best to look at the cipher as a logical circuit inside the solver. The logical circuit has variables (boxes), functions (hexagons) and the known keystream.

Measures of the logical circuit representation

Measures of this logical circuit representation:

- Depth of each keystream bit is the number of functions traversed from the reference state
- Reference state dependency numbers: no. bits each keystream bit depends on. A large part of these must be guessed before evaluation can take place
- Function difficulty. When traversed, these must be calculated Goal: minimise all of these

Generate logical circuit from CNF

We wrote an extension to MiniSat to visualise the logical circuit. Example HiTag2 logical circuit:

Optimising representation of non-linear functions

Simple $\mathbb{G F}(2)$ polynomial

$$
x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}
$$

It is usually represented with each non-single monomial expressed as a set of clauses, setting additional variables $i_{1} \ldots i_{3}$. The polynomial then becomes

$$
x_{1}+i_{1}+i_{2}+i_{3}
$$

With this representation, no. of clauses is 3×3 regular +1 xor-clause, avg. clause length 4.14. Three extra variables also needed

However, representation using a Karnaugh table is

$$
\bar{x}_{1} \vee \bar{x}_{3} \quad \bar{x}_{2} \vee x_{3} \quad \bar{x}_{1} \vee \bar{x}_{2}
$$

Outline

(1) Background

- DPLL-based SAT solvers
- Stream ciphers
(2) Adapting the SAT solver
- XOR-support
- Gaussian elimination
- Dynamic behaviour analysis
(3) Adapting the cipher representation
- Logical circuit representation
- Representation of non-linear functions
(4) Implemented attacks
- Crypto-1 and HiTag2
- Bivium

Crypto-1\&HiTag2

Crypto-1

- Best attack with SAT-solvers[Courtois08Algebraic]: 200 seconds, but this uses mathematical means to bring down the complexity (simple, as Crypto- 1 uses only an LFSR)
- We break it in 40 seconds.

HiTag2

- Without our optimisation: $2^{21} \mathrm{~s}$ to break
- Takes $2^{14.5}$ s to break with our technique

Bivium

Bivium is a simplified version of Trivium. Best attack against it takes $2^{43} \mathrm{~s}$.

We break it in $2^{36.5} \mathrm{~s}$.

Thank you for your time

Thank you for your time!

