
Secret Shuffling: A Novel Approach to RFID
Private Identification

Claude Castelluccia and Mate Soos

INRIA, 655 avenue de l’Europe, Montbonnot, France
{claude.castelluccia, mate.soos}@inrialpes.fr

Abstract. This paper considers the problem of private identification of
very small and inexpensive tags. It describes a novel scheme that does not
require any computation from the tag. The proposed scheme relies on an
NP-complete problem and as such is proven to be difficult to breach. We
show that our solution outperforms existing computation-free schemes
such as the pseudonym-rotation scheme proposal by Juels et al.[1].

1 Introduction

An RFID (Radio-Frequency Identification) tag is an extremely small electronic
device that can – within a short range – wirelessly communicate with a reader.
There are various types of RFID tags, ranging from very powerful to very weak
devices. This paper focuses on tags with very limited computation capabilities,
such as EPC tags. These devices are powered by the reader’s electromagnetic
field, and so need no battery and subsequently no recharging. EPC RFID tags
carry interesting possibilities for the end users: they could be used to return
faulty items to shops without keeping receipts, or even help intelligent washing
machines that know what kind of clothes are inside them. However, with these
possibilities comes a price: the possibler loss of privacy. For example, anybody
possessing a reader could read any passersby’s tags, which can potentially reveal
even the brand of his or her socks. Similarly, tracking of people would also become
possible. These possibilities scare off potential adoption as was the case with the
boycott of Benetton where the garment maker was forced to take off RFID tags
from their clothes.

Contributions This paper considers the problem of private identification of
very small and inexpensive tags that cannot perform any cryptographic op-
erations. Our proposal is a probabilistic identification protocol (ProbIP) that
does not require any computation from the tag. Our scheme resembles Juels’
pseudonym-rotation scheme as presented in [1], but increases its security signif-
icantly. The presented scheme is an identification scheme. As such, it does not
address authentication, and so can not be used to authenticate a tag. It simply
serves to correctly identify a tag if no active attacker is present. Privacy of the
tag is preserved to some extent even if an active attacker is present.

Organization This paper is structured as follows: Section 2 presents briefly
the related work. Section 3 describes our identification protocol and Section 4
provides a security analysis of our protocol.

2 Related work

Existing solutions to the RFID private identification problem can be categorized
as follows: hash-lock based systems, solutions based on special tags and ultra-
lightweight crypto-primitives.

Hash-lock based systems have been studied deeply, interesting papers in this
category include a tree-type approach from Molnar et al. [2], an optimization of
key-trees by Buttyan et al. [3], a synchronization-type approach from Ohkubo
et al. [4] and a mixed approach from Lu, Han et al. [5]. Although these schemes
offer relatively good security, they all suffer from the same problem: the need of
a secure one-way hash function on the tag.

Some solutions use special tags, that usually have a relatively good processing
power, to supervise and control all communication between the regular RFID
tags and the reader. The RFID blocker tag by Juels, Rivest and Szydlo in [6]
is an example of such a solution. This avenue of research has the advantage of
providing very strong privacy but requires that an intelligent device be present
at all times when a tag is being queried.

Ultra-lightweight crypto-primitives are an interesting avenue in RFID secu-
rity research. In this category are papers such as Vajda and Buttyan’s paper
[7] that has been studied by Li et al. in [8], and a tiny implementation of AES
by Feldhofer et al. in [9]. Also in this category, is the paper that gave us the
most inspiration, written by Juels and Weis [10], that introduced HB+, a novel
lightweight authentication protocol. We believe this avenue of research has the
potential to provide the best solution to the proposed problems.

3 Probabilistic Identification Protocol (ProbIP)

In this section, we introduce our Probabilistic Identification Protocol (ProbIP).
In ProbIP, each tag Tj is configured with a unique K-bit long random secret
key, kj . The key is used as a bit-vector, with kj [1] being the first bit, kj [2] being
the second, etc. The reader, R, stores all the keys that are assigned to each of
the n tags.

3.1 Protocol description

The protocol, between tag Tj , and the reader R, is as follows:

1. R initiates an identification by broadcasting a HELLO message.
2. Upon reception of a HELLO message, Tj replies with P packets and a FINISHED

message, where P is a system parameter that will be defined in the following
section. A packet is a list of 2L values, a1, b1, a2, b2 . . . , aL, bL, where ai is a

random index from the key ai
r← [1,K] that is never repeated in the same

packet, and bi is a random bit bi
r← {0, 1} that satisfy the following equation:

L∑
i=1

kj [ai]⊕ bi = L/2 (1)

Since addition is commutative, as long as the pairs ai, bi for all i are not
changed, the order of the pairs can change. We will note these pairs in the
following fashion: āi if bi = 1 and ai if bi = 0.

3. Upon reception, R computes the result of eq. (1) for each packet for every
tag’s key in a relatively fast fashion. The key(s) that fits all the packets is
suspected to have been used to send the packets.

3.2 An example

Let’s consider, to illustrate our protocol, a system that uses the following artifi-
cially small system parameters, L = 4, K = 6 and n = 4. In this example, T1 is
configured with the key k1 =011001, T2 with the key k2 =100101, T3 with the
key k3 =011110 and finally T4 with k4 =001110.

Let’s assume that the tag the reader is trying to identify is T2. An example
protocol run between R and T2 is the following:

In a step-by-step fashion, the following happens during this protocol run:

1. R broadcasts a HELLO message.
2. Tag T2 sends two packets and the FINISHED message. The first packet is

defined by [1 2 5 6], for which the eq. (1) wrt. k2 is (1 ⊕ 1) + (0 ⊕ 0) +
(0⊕ 1)+ (1⊕ 0) = 2 = L/2 . The second packet is defined by [2 3 4 5] for
which the eq. (1) wrt. k2 is (0⊕ 1) + (0⊕ 0) + (1⊕ 0) + (0⊕ 0) = 2 = L/2 .

3. Upon reception of the first packet, the reader computes for each of the 4 tags
the eq. (1). R gets that for T1 it is 4, for T2 it is 2, for T3 it is 2 and for T4 it
is 1. The reader, therefore, keeps only tags T2 and T3 as possible candidates.

4. Upon reception of the second packet, the reader computes for tags T2 and
T3 the eq. (1). R gets that for T2 it is 2 and for T3 it is 3. At this point, tag
T2 has been successfully identified by R.

3.3 Minimum number of packets needed by the reader

Here, we compute the minimum amount of packets needed by R to correctly
identify a tag. Since the protocol is probabilistic, there will always be a non-zero
probability fp that the number of packets sent will not be enough. However, this
probability can be arbitrary adjusted between 0 < fp < 1.

The total number of packets possible for all keys is
(

2K
L

)
, as ai comes from

a set of size K and bi comes from a set of size 2, whereas for a given key, the

number of possible packets is only
(

K
L/2

) (
K − L/2

L/2

)
since eq. (1) must hold

and indices cannot be repeated in a packet. The ratio of these two numbers

R =

(
K

L/2

) (
K − L/2

L/2

)
(

2K
L

) (2)

is the probability that a random packet is valid for a random tag. As an example,
for K = 400, L = 10, R ≈ 0.232 .

Given n tags, the false positive probability, fp, that p packets generated by
a given tag match another tag’s key can be calculated as fp = n ∗ Rp . The
number of packets sent from the tag to the reader should then be

P =
⌈

log(1/n ∗ fp)
log(R)

⌉
(3)

which is, for the example parameters of L = 10, fp = 0.1 and n = 107,
P = d12.62e = 13. If these packets do not suffice (which has a low chance
of happening), repeated identification attempts will be carried out by the reader
until it finds the correct tag.

3.4 Parameters

The parameter K must be at least dlog2(n)e bits, but as the security of the
system will rely on the condition that n � 2K , the larger this parameter is,
the more secure the system. Also, K should be at least an order of magnitude
larger than L. The parameter L must be such that L/2 is a whole number. When
deciding the parameters, the number of bits sent in one identification

B = P ∗ L ∗ (dlog2(K)e+ 1) (4)

which is also the minimum amount of random bits that need to be generated
during an identification, must be kept in mind. The parameters L,K and n
all influence this number. As an example, for K = 400, L = 10 and n = 107,
B = 1300 bits. It is important to note that sending this information is just a
fraction of a second given a 52.969 kb/s label-to-interrogator link in Class 1 EPC
tags [11].

3.5 Algorithm used by the reader

This section describes the algorithm used by the reader or a set of back-end
servers, to identify the tag using the packets it sent. It is assumed that R knows
the keys k1 . . . kn of all the tags in the system. These keys are stored not in
their natural order kj [1], kj [2], . . . kj [K] for all Tj ∈ {T1, . . . , Tn}, but in their
column-like order k1[i], k2[i], . . . kn[i] for all i ∈ [1,K]. These K columns we will
call Col1, . . . , ColK . Naturally, storing these columns needs exactly the same
amount of memory as simply storing the keys, i.e. n ∗K bits.

At each protocol instance, the following is executed by R:

1. R fills with zeros a temporary n-long byte-vector temp. This will store the
result of the eq. (1), for each tag. A byte is sufficient for any L < 1.5 ∗ 256 .

2. Upon reception of a packet, R performs the following algorithm for each
of the packets’ L pairs (ai, bi): For each tag Tj in the system, temp[j] is
incremented by one if Colai [j]⊕ bi = 1 . Iteration through the temp and the
Colai can be parallel, so for a given index, on average n+8n bits of memory
need to be read and 8n/2 bits of memory written.

3. Once all pairs in the packet have been considered, all tags Tj for which
temp[j] = L/2 could have sent the packet.

4. Steps 2-3 are repeated for all packets with different temps, i.e. temp1 for
packet no. 1, temp2 for packet no 2, etc.

5. The identified tag is the tag Tj for which tempi[j] = L/2 for all i ∈ [1, P] .

The proposed algorithm identifies a tag by looking through, on average, P ∗
L ∗ (n + 8n) bits of memory and, by writing P ∗L ∗ 8n/2 bits of memory space,
while doing L ∗ n comparisons and L ∗ n/2 incrementation per packet, plus
P ∗ n comparisons for evaluating all the packets’ results in step 5, which gives
P ∗ L ∗ (n + n/2) + P ∗ n processing steps in total. For instance, if L = 10,K =
400, n = 107 then the overall memory requirement is 400∗107 +13∗8∗107 bits=
630MB and the overall processing requirement is 13∗10∗ (1.5∗107)+13∗107 ≈
2.08e9 processing steps. Parallelization of this algorithm is relatively simple,
and can bring down both the memory and processing requirement of individual
computers.

Note that an adversary does not know the configured set of keys, and would
need to run this algorithm with n = 2K and so ≈ 1.63e113 GB of memory would
be needed for the same parameters (L = 10,K = 400). The processing need
would increase to similar proportions.

4 Security analysis of ProbIP

In this section we will evaluate the security of our scheme using the “strong
privacy” model proposed by Juels and Weis in [12]. In our scheme, tags’ keys
are completely independent of each other thus the corruption of one tag does not
affect the security of the rest of the system. Therefore, it is useless for adversary

A to use the the SetKey procedure to change the key of tags. It is also useless
for A to examine any other tags than the ones it will pick, i.e. TA and TB . In
our scheme, ReaderInit is a simple fixed HELLO message, so it need not be
executed by A at all. Therefore, in view of our protocol, the privacy experiment
of the model can be refined to what is present in Fig. 1.

Experiment Exppriv
A,S [K, n, xA + xB + xC]:

Setup:

(1) Generate keys (k1, . . . , kn) uniquely and randomly with GenKey
(2) Initialize R with keys (k1, . . . , kn)
(3) Set each Ti’s key ki with a SetKey call

Phase 1 (Learning):

(4) Let A perform xA TagInit calls with TA and let it record the received packets
into the set XA

(5) LetA perform xB TagInit calls with TB and let it record the received packets
into the set XB

Phase 2 (Challenge):

(6) Let TC
r← {TA, TB}

(7) Let A perform xC TagInit calls with TC and let it record the received packets
into the set XC

(8) Let A perform calculations on the recorded packets in order to make an
educated guess whether TC = TA or TC = TB .

Exp succeeds if A guessed TC correctly

Fig. 1. The privacy experiment as proposed by Juels and Weis in [12], refined to the
specifics of our protocol

In order to find out how the experiment can be optimized by the adversary
and how he should choose the parameters xA, xB and xC , we will first ana-
lyze what a packet is. Then we propose an algorithm to perform the attack,
and finally, we will experimentally show what is the resistance of our proposed
protocol for certain parameter combinations.

4.1 A closer look at the packets

Looking at the packets in a more mathematical way, they describe an L/2-
in-L LSAT problem. In L/2-in-L LSAT, like in LSAT, the input instance is
a collection of clauses, where each clause consists of exactly L literals, where
each literal is either a variable or its negation. The L/2-in-L LSAT problem is

to determine whether there exists a truth assignment to the variables so that
each clause has exactly L/2 true literals. This problem is NP-complete if L > 2
as indicated by Schaefer’s dichotomy theorem [13]. Thus, if an attacker, given
enough packets, wants to solve for k, if L > 2, he would have to solve an NP-
complete problem.

Similarly, a packet can also be looked at as an L-long Linear Pseudo-Boolean
Constraint (LPBC) as the original eq. (1) implied.

4.2 Algorithm used by the attacker

In light of what the true nature of a packet is, the way for an attacker to attack
our scheme in the given model is to execute an LPBC solver on XC ∪XA, and
examine the output of the solver. If the result is unsatisfiable (UNSAT), then
surely TC 6= TA (consequently, TC = TB), since TA only sends packets that have
a solution, kA. However, if the result is satisfiable (SAT), TC can be either of
the tags. But, if the attacker knows that he has gathered enough packets that
had TC 6= TA the result would surely have been UNSAT, then he knows that
TC = TA. If he cannot gather this amount of packets in XA and XC , then he
will almost always get the result SAT, which he cannot use. Therefore there is
no need for him to gather packets from more than one of the tags in the learning
phase, and it does not matter which one he picks. We decided to pick TA.

While keeping the above argument in mind, one could reason in the following
way about NP-hard problems:

1. They are hard to solve exactly but can in certain cases be approximated
easily. While this is true, it does not help the attacker in any way. If the
attacker can find an approximate solution to the set of constraints defined
by XA∪XB , that does not tell anything about whether TC = TA or TC 6= TA.

2. They are hard to solve in the worst case, but easy to solve most of their
instances. This is true, and we will deal with this later, where we show that
the problem generated by the tag is exactly what is suggested in [14] and
which is known to be hard.

LPBC solver used We tried two of the most respected LPBC solvers, Minisat
[15] and Toolbar [16], and a less known one, Galena [17]. Each one had its own
distinct advantage. Galena was designed to solve exactly these kinds of problems,
Toolbar had a large user-base and thus good support, while Minisat was the best
performing in many SAT competitions. Minisat had multiple advantages over
the competition: since it was a pure SAT solver, it could use the well-established
DPLL algorithm as described by Davis, Putnam et al. in [18], and could also
benefit from “learning” as first shown by Schulz et al. in [19], and improved by
Marques Silva et al. in [20]. Galena adapted these techniques to solving LPBC
problems, but it could not use the well-established literature of how to implement
them in a way that is fast.

The fastest solver by far (and also, the most modifiable), was Minisat. It
was the winner of multiple SAT-competitions in 2005 and came the first in the
2006 SAT-race, and so gave a good foundation to base our results on. One would
expect that the speed slowdown of using the LPB constraints of the type in eq.
(1) converted into regular CNF formulas is significant. However, as was shown
by the version of Minisat called “Minisat+” this method is faster than directly
tackling the original LPB-constraint problem: Minisat was much better than its
rivals in the LPB-part of the SAT competition in 2006.

In order to use Minisat, we needed to convert each packet to a set of CNF
clauses. We thus used a conversion that made from e.g the packet of [1 2 5 9]
the following CNF clauses:

(1 ∨ 2̄ ∨ 5) ∧ (1̄ ∨ 2 ∨ 5̄) ∧ (2̄ ∨ 5 ∨ 9) ∧ (2 ∨ 5̄ ∨ 9̄) ∧ . . .

i.e. all L/2 + 1 combinations in their original and their negated form. These
formulas simply mean that any L/2 + 1 literals that have the same value is
forbidden. We used this conversion because the conversion algorithm included
in Minisat+ converted the problem in such a way that it was slower than using
the conversion given above.

Minimum number of packets needed by the attacker Let’s assume that
TA 6= TC . The attacker first needs to know how should he distribute the number
of ReaderInit calls he has between TA and TC in order to have the highest
possibility of finding out that TA 6= TC . We will now calculate this ratio and
deduce equation for the minimum amount of packets needed.

xA packets from TA reduces the number of possible keys by a factor of RxA ,
the remaining set of possible keys we call SA . xC packets from TC also reduces
the number of possible keys by a factor of RxC , the remaining set of possible
keys we call SC . Intuitively, the union of these packets will leave the attacker
with

PC = |SA ∩ SC | = max
{

max(2K ∗RxA , 1) ∗ (2K ∗RxC)
max(2K ∗RxC , 1) ∗ (2K ∗RxA) (5)

number of possible key combinations. This equation tells two things. Firstly, the
intersection is the smallest if xA = xC . Secondly, in case TA 6= TC , the closer
PC is to 0, the higher the possibility of the attacker to find that the constraints
XA∪XC is UNSAT. As an example, if PC = 0.1 then he has a 90% chance that
he will find out that the resulting constraints are UNSAT (thus TA 6= TC) and
if he finds that XA ∪XC is SAT, then he can be 90% sure that indeed TA = TC .

Therefore, if the attacker wishes to attain a 90% chance ratio of finding out
which tag is TC then he needs

Patt =
⌈

log(1/2K ∗ 0.1)
log(R)

⌉
(6)

packets equally distributed between xA and xB . As an example, if K = 400 and
L = 10, then Patt = d191.62e = 192. If n = 107 and consequently, P = 13, this

is dPatt/P e = 15 identifications in total, i.e. 8 identifications for both TA and
TC . It is interesting to observe that the equations (6) and (3) completely match
if fp = 0.1 and n = 2K i.e. the search space of the reader is not restricted to the
configured set of keys.

The threshold phenomenon As it is hypothesized by Cheeseman et al. in
[14] and further explained by B. Smith in [21], all NP-hard problems exhibit a
so-called phase-transition, which states that given a randomly generated NP-
hard CSP(Constraint Satisfaction Problem), there is always a point where it is
the hardest to solve the generated problem, and this corresponds exactly to the
point where there is a transition from SAT to UNSAT. From this point on, the
difficulty of finding a solution decreases at an exponential rate, along with the
possibility of having any solution at all.

This phenomenon plays a crucial part in the security evaluation of our pro-
tocol: as the possibility of UNSAT increases if TA 6= TC , the hardness of finding
this out increases as well. The peak of the difficulty of finding out UNSAT is
then at the minimum amount of packets the attacker needs (i.e near Patt) to
find that the CPS defined by the packets is indeed UNSAT. If more packets are
known by the attacker, this difficulty decreases at an exponential rate in relation
to the extra number of packets gathered.

Precisely calculating the phase-transition and its corresponding graph is very
hard for a given CSP: even for such a widely studied problem as k-SAT, since
its inception in 1991 with the influential paper of Cheeseman et al. [14] it has
taken more than 10 years to prove that the threshold for k-SAT is 2k log 2−O(k)
[22]. So, instead of mathematically calculating the threshold and its correspond-
ing graph, we will experimentally show it using Minisat, and extrapolating the
results, deduce the protocol’s resistance to attacks.

An example threshold plot is present in Fig. 2. In this particular instance
of the protocol the parameters were such that Patt ≈ 36 and TA = TC so that
the Hamming distance of solution given by the satisfiability solver approached
0 as the number of packets given to it approached Patt. The phase-transition is
clearly between no. of packets 30 and 36.

4.3 Results

In calculating the resistance to attacks, we used the parameter L =10. Knowing
that it is hardest to solve at Patt, we gave our simulated attacker multiple number
of Patt packets to evaluate the computation speed-up it can achieve if given more
packets. All experiments were performed with a 3GHz Pentium-D machine with
2 GB of memory. The plot for 64, 192, 576 times Patt is in Fig. 3.

The scale on the time axis is logarithmic, since the time to break the system
increases exponentially as the key-length is increased. This is a consequence of
using an NP-hard problem to base the security of the protocol on. The breaking
times for different values of Patt, n and K are shown in Table 1.

The results clearly show that there is a trade-off between the number of
packets collected and the hardness of breaking the system privacy (i.e. winning

 0
 1
 2
 3
 4
 5
 6

T
im

e
to

 fi
nd

so
lu

tio
n

(s
)

 0

 30

 10 20 30 40 50 60 70 80 90 100H
am

m
in

g
di

s-
ta

nc
e

fr
om

 k

Number of packets

Fig. 2. The threshold phenomenon illustrated. Top part of the plot shows the time to
find a solution versus information given, the bottom part shows the Hamming distance
of the solution found from the key of the tag

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180

T
im

e
ne

ed
ed

 to
 b

re
ak

th
e

an
on

ym
ity

 (
s)

Keylength

64*Patt
192*Patt
576*Patt

Fig. 3. Time to break the anonymity versus the keylength for different overinfo rates
(i.e. the number of times Patt packets was given to the attacker)

the privacy experiment). The more packets an attacker can collect, the easier it
is for him to break the system.

4.4 Analysis

The results clearly show that there is a trade-off between the number of pack-
ets collected and the hardness of breaking the system privacy (i.e. winning the
privacy experiment). The more packets an attacker can collect, the easier it is
for him to break the system. This interesting property is a direct result of the
threshold phenomenon.

An interesting property of our scheme is that n is not directly present any-
where in the results. This is because the only help a greater n gives to the
attacker is that the number of packets per identification, P , will be greater, and
so Patt number of packets will be attainable by less TagInit queries.

packets/K 100 200 400 1000

1∗Patt 1.47e2 s 3.17e11 s 1.46e28 s 1.46e78 s
3∗Patt 3.33e1 s 7.41e5 s 3.67e14 s 4.49e40 s
9∗Patt 6.31e0 s 4.54e3 s 2.35e9 s 3.27e26 s

27∗Patt 4.27e0 s 6.37e2 s 1.42e7 s 1.57e20 s
64∗Patt 4.02e0 s 4.87e2 s 7.15e6 s 2.27e19 s

192∗Patt 5.34e0 s 7.31e1 s 1.37e4 s 9.01e10 s
576∗Patt 1.00e1 s 7.28e1 s 3.86e3 s 5.74e8 s

Table 1. This table shows the trade-off in time and calculations that are possible in
terms of the overinfo rate (i.e. the number of times Patt packets was given to the
attacker). Larger keysizes make the attacker’s job more difficult - he will either need
to do much more calculations or gather much more packets than with smaller keysizes.

Our scheme, unlike the usual cryptographic schemes, is simple to analyze.
The detailed examination of the problem that leads to the results shows that
any algorithm that can break the privacy of the proposed protocol significantly
faster than the presented one is a technological breakthrough.

Comparison with other schemes The presented scheme is targeted for very
simple RFID tags with no computational capabilities. Therefore, it is not meant
to compete with schemes that use cryptographic functions such as a secure hash.
As such, our scheme should be compared to schemes such as the pseudonym-
rotation scheme, proposed in [1], where each tag is configured with a short list of
random identifiers called pseudonyms. In this scheme, each time a tag is queried,
it emits the next pseudonym in the list, cycling to the beginning when the list
is exhausted. With this scheme, if n = 107 a tag that contains 15 pseudonyms
which corresponds to a memory size of 15 ∗ dlog2(107 ∗ 15)e = 420 bits, loses
its privacy after 16 requests by the attacker. Note that this is exactly the same
as our protocol with parameters K = 420, L = 10, dPatt/P e = 16, with the
exception that in our protocol, the attacker needs not only to record the sent
information, but also to execute a difficult computation to win the privacy ex-
periment. In other words, our protocol gives the same amount of information
during one protocol run as the pseudonym-rotation scheme, but in a coded way.
As such, for an attacker to break our scheme in a reasonable amount of time, he
needs to collect much more information than would be necessary from a purely
information theoretic point of view.

References

1. Juels, A.: Minimalist cryptography for low-cost RFID tags. In: SCN 2004
2. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol

enabling ownership transfer of RFID tags. In: SAC 2005
3. Buttyán, L., Holczer, T., Vajda, I.: Optimal key-trees for tree-based private au-

thentication. In: PET 2006

4. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: Ubicomp 2004, Workshop Privacy: Current Status and
Future Directions

5. Lu, L., Liu, Y., Hu, L., Han, J., Ni, L.: A dynamic key-updating private authen-
tication protocol for RFID systems. In: PerCom 2007

6. Juels, A., Rivest, R., Szydlo, M.: The blocker tag: Selective blocking of RFID tags
for consumer privacy. In: ACM CCS 2003

7. Vajda, I., Buttyán, L.: Lightweight authentication protocols for low-cost RFID
tags. In: Ubicomp 2003

8. Li, T., Wang, G.: Security analysis of two ultra-lightweight RFID authentication
protocols. In: IFIP SEC 2007

9. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: Aes implementation on a grain of
sand. In: Information Security, IEEE (2005) 13–20

10. Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In:
CRYPTO’05

11. EPCglobal: 13.56 mhz ism band class 1 radio frequency identification tag interface
specification (2003). Technical report, Auto-ID cetner, MIT

12. Juels, A., Weis, S.: Defining strong privacy for RFID. Cryptology ePrint Archive,
Report 2006/137 (2006)

13. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC ’78
14. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.

In: IJCAI-91
15. Een, N., Soorensson, N.: An extensible sat-solver [ver 1.2]. Theory and Applications

of Satisfiability Testing 2919/2004
16. Bouveret, S., Heras, F., de Givry, S., Larrosa, J., Sanchez, M., Schiex, T.: Toolbar:

a state-of-the-art platform for wcsp (2004)
17. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 2003.
305–317

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3) (1960) 201–215

19. Schulz, M.H., Auth, E.: Improved deterministic test pattern generation with appli-
cations to redundancy identification. IEEE Transactions on computer-aided design
8(7) (July 1989) 811–816

20. Silva, J.P.M., Sakallah, K.A.: Graspa new search algorithm for satisfiability. In:
ICCAD ’96

21. Smith, B.: The phase transition in constraint satisfaction problems: A CLoser look
at the mushy region. In: Proceedings ECAI’94. (1994)

22. Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2ˆ k(ln 2 - o(k)). In:
STOC ’03

