
CryptoMiniSat 2.5.1
Mate Soos

LIP6 UPMC, SALSA team INRIA Rocquencourt, PLANETE team INRIA Grenoble

I. Introduction

In this solver description we present the feature-set of
CryptoMiniSat, a modern SAT Solver that aims to unify
the advantages of SatELite [1], PrecoSat [2], GLUCOSE [3]
and MiniSat [4] with the xor-clause handling of version 1 of
CryptoMiniSat [5] to create a formula that can solve many
types of different problem instances under reasonable time.

II. Features

CryptoMiniSat is a DPLL-based SAT solver developed
from MiniSat. The following list of non-exhaustive features
are offered by CryptoMiniSat relative to the original “core”
MiniSat.

A. Xor clauses

XOR clauses are extracted at the beginning of the solving.
They are subsequently treated differently. They have their
own watchlists, their own propagation mechanism, and
their own subsumption algorithm. This should mean that
they are handled faster in most scenarios.

B. Binary xor clauses

Binary xor clauses are handled specially. Firstly, they are
regularly searched for using a special heuristic. Secondly,
a forest structure is built from them, indicating which
variable is equi- or antivalent with which variable. The top
of the trees are regularly replaced with those lower in the
tree, reducing the number of clauses and variables in the
problem, and usually leading to variable assignments (and
possibly even more binary xor clauses).

C. Binary xor clause finding through regular XOR-ing of
xor clauses

As per the PhD Thesis of Heule [6], xor clauses are
regularly XOR-ed with one another to obtain different
XOR clauses. However, contrary to that present in the
paper, the smaller XOR-s are only acted upon if they are
binary. In this case, they are added to the forest of equi-
and antivalences, and replaced with one another at a later
time, according to a heuristic.

D. Phase calculation, saving and random flipping

Default phase is calculated for each variable according
to the Jeroslow and Wang [7] heuristic. The phases are
saved, according to Pipatsrisawat and Darwiche [8]. The
phase, however, is randomly flipped at intervals that is
determined by the problem. The average branch depth
is measured, and with P(1/avgBranchDepth), the current
phase is flipped. According to our experience, this helps in
exploring new places in the search space.

E. Automatic detection of cryptographic and industrial in-
stances

Industrial and cryptographic instances are very different.
They need different restart strategies and they need differ-
ent learnt clause activity statistics. We try to detect which
problem belongs to which family, and use GLUCOSE-style
learnt clause heuristics [9] or MiniSat-style learnt clause
activity accordingly. We also switch the restart type from
dynamic to static and vica-versa. The detection is based
on the percentage of xor clauses and the stability of vari-
able activity. Either of the two is too high, the problem
is deemed to be cryptographic. The stability of variable
activity is measured through saving of the top 100 vari-
ables, and comparing them with the next restart’s top 100
variables. This is done for 5 restarts, and at the end, the
decision is made. The detection routine is run regularly, to
detect whether the problem has changed enough to switch
from one type to the other.

F. Variable elimination, clause subsumption and clause
strengthening

SatELite-type variable elimination, clause subsumption
and clause strengthening is regularly performed. The occur-
rence lists are, however, not updated all the time such as
the case with other solvers. Instead, occurrences are calcu-
lated on per-use basis. The number of variable elimination
cycles, clause subsumption cycles and clause strengthening
cycles are limited each time the simplification is done such
as to avoid the routine taking overly large amounts of time.

G. On-the-fly clause improvement

Since the occurrence lists are not updated all the time,
the only way to carry out subsumption is the algorithm by
Han and Somenzi [10]. This lightweight subsumption-check
is carried out every time a conflict analysis is done.

H. Binary clause propagation

Binary clauses are in a separate watchlist, as per GLU-
COSE [3]. They are fully propagated before other clauses
are propagated. The propagation order is: binary clauses,
regular clauses, xor clauses. As per PrecoSat [2], the binary
clauses are always fully propagated, regardless if a conflict
has been found earlier. The conflict analysis routine is then
called on the last conflicting binary clause.

I. 32-bit pointers on 64-bit architectures under Linux

64-bit pointers are well-known to slow down the solving
of SAT solvers, due to the extra memory and thus cache
space occupied by them when going through the watchlists
in the propagation phase. This limitation means that all
code has to be compiled as 32-bit code, which means that



extra registers and instructions provided by modern 64-bit
architectures is lost. We counter this phenomenon with
small pointers. Since the memory used by SAT solvers is
rarely more than 4GB, the pointers rarely contain more
than 32 bit real information. We extract this information,
and only store these 32 bits.

J. Binary graph treatment

Binary clauses generated by hyper-binary resolution [11]
are added in an optimal manner: the binary subtree of
literal a is searched and the highest-degree dominated literal
c still leading to b is connected to b. This ensures maximal
graph connectivity and sparsity. Binary clauses describing
tautologies such as (¬a∨ b), (¬b∨ c), (¬a ∨ c) are regularly
removed. Tautologies are also regularly and temporarily
generated to subsume and strengthen other clauses.

K. Clause cleaning

Clauses are regularly removed that have at least one of
their literals assigned to true. Contrary to “core” MiniSat,
we also remove false literals from clauses, shortening them.
Interestingly, this does not need these clauses to be re-
attached, as false literals are not in the watchlists — or if
they are, the clause is satisfied, and can be fully removed.

L. Sub-problem detection and handling

Problems can sometimes contain multiple fully distinct
sub-problems. We build a connection graph between clauses,
and treat graph components as distinct problems. These
sub-problems are solved with sub-solvers, their solutions are
saved, and finally added at the solution extension phase. If
any of the sub-problems are UNSAT, then the whole prob-
lem is UNSAT. Interestingly, it is a good idea to check for
sub-problems regularly. As problems are solved, variables
are sometimes assigned at decision level zero, disconnecting
the graph into distinct components. We regularly check for
such occurrences, and solve the sub problems as described.

M. Xor clause subsumption

Xor clauses can be subsumed similarly to normal clauses.
Since xor clauses represent many regular clauses, doing the
subsumption natively saves significant time.

N. Dependent variable removal

Dependent variables , as per [6] are removed along with
their corresponding xor clause. Dependent variables are
variables that appear nowhere else but in exactly one xor
clause. Since that xor clause can always be satisfied by a
correct value of the dependent variable, the xor clause can
be removed without further ado, and reintroduced during
solution extension as per SatELite. This removes a con-
straint and a variable from the problem. Note that this
variable could not have been removed as part of pure literal
elimination. However, interestingly, blocked clause elimi-
nation (BCE) can remove these clauses and corresponding
variable(s). This connection has not been noted by Biere
and Jarvisalo in [12], but shows the effectiveness of their
method.

O. Failed literal probing

Variables are tried to be branched both to true and
false at regular intervals. If any of the branches fails
(conflict is returned), that variable is assigned to the other
branching. Otherwise, the assignments of both are saved
and compared with one another. If they contain a common
subset, that variable is assigned, as per [13]. An interesting
addition to this is the method by Li [14], where binary XOR
clauses are found in the same way that common subset of
assignments are found. Binary xor clause l⊕u is also found
when u ∈ Prop(clauses, l) and ¬u ∈ Prop(clauses,¬l),
following Proposition 4 of [13].

Acknowledgements

The author was supported by the RFID-AP Projet of
ANR, project number ANR-07-SESU-009.

I would like to thank Martin Maurer, Trevor Hansen and
Vijay Ganesh for their bug reports, ideas and stress-tests.

Experiments carried out to tune CryptoMiniSat were
performed using the Grid’5000 experimental testbed, be-
ing developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several
Universities as well as other funding bodies [15].

References

[1] Eén, N., Biere, A.: Effective preprocessing in SAT through
variable and clause elimination. [17] 61–75

[2] Biere, A.: P{re,i}cosat@sc’09: a solver that predicts learnt
clauses quality. In: SAT 2009 competitive events booklet. (2009)
41–42

[3] Audemard, G., Simon, L.: GLUCOSE: a solver that predicts
learnt clauses quality. In: SAT 2009 competitive events booklet.
(2009) 7–8

[4] Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia,
E., Tacchella, A., eds.: SAT. Volume 2919 of LNCS., Springer
(2003) 502–518

[5] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to
cryptographic problems. [16] 244–257

[6] Heule, M.J.: Smart solving: Tool and techniques for satisfiability
solvers. Technical report, Technische Universiteit Delft (2008)

[7] Jeroslow, R.G., Wang, J.: Solving propositional satisfiability
problems. Ann. Math. Artif. Intell. 1 (1990) 167–187

[8] Pipatsrisawat, K., Darwiche, A.: A lightweight component
caching scheme for satisfiability solvers. In Marques-Silva, J.,
Sakallah, K.A., eds.: SAT. Volume 4501 of Lecture Notes in
Computer Science., Springer (2007) 294–299

[9] Audemard, G., Simon, L.: Predicting learnt clauses quality in
modern SAT solvers. In Boutilier, C., ed.: IJCAI. (2009) 399–404

[10] Han, H., Somenzi, F.: On-the-fly clause improvement. [16]
209–222

[11] Gershman, R., Strichman, O.: Cost-effective hyper-resolution
for preprocessing CNF formulas. [17] 423–429

[12] Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination.
In Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of
Lecture Notes in Computer Science., Springer (2010) 129–144

[13] Berre, D.L.: Exploiting the real power of unit propagation
lookahead. Electronic Notes in Discrete Mathematics 9 (2001)
59–80

[14] Li, C.M.: Equivalent literal propagation in the DLL procedure.
Discrete Applied Mathematics 130(2) (2003) 251–276

[15] The Grid’5000 team: The Grid’5000 project https://www.
grid5000.fr.

[16] Kullmann, O., ed.: Theory and Applications of Satisfiability
Testing — SAT 2009, Swansea, UK. In Kullmann, O., ed.: SAT.
Volume 5584 of LNCS., Springer (2009)

[17] Bacchus, F., Walsh, T., eds.: Theory and Applications of Satis-
fiability Testing, St. Andrews, UK. In Bacchus, F., Walsh, T.,
eds.: SAT. Volume 3569 of LNCS., Springer (2005)

https://www.grid5000.fr
https://www.grid5000.fr

	Introduction
	Features
	Xor clauses
	Binary xor clauses
	Binary xor clause finding through regular XOR-ing of xor clauses
	Phase calculation, saving and random flipping
	Automatic detection of cryptographic and industrial instances
	Variable elimination, clause subsumption and clause strengthening
	On-the-fly clause improvement
	Binary clause propagation
	32-bit pointers on 64-bit architectures under Linux
	Binary graph treatment
	Clause cleaning
	Sub-problem detection and handling
	Xor clause subsumption
	Dependent variable removal
	Failed literal probing


