
SAT Solvers and Configuration Management
Presentation for Mancoosi Project

Mate Soos

UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA

2nd of November 2010

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 1 / 15



Table of Contents

1 Context

2 CUDF and SAT solvers

3 Conclusions

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 2 / 15



Outline

1 Context
SAT solvers
The Mancoosi Project

2 CUDF and SAT solvers
Implementation ideas
Why would this work?
Why wouldn’t this work?

3 Conclusions

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 3 / 15



Motivations and goals

Motivations

Configuration management emerging problem

SAT solvers refined tools

Solve configuration management problems with SAT solvers

Goals

Show how to use SAT solvers in config. management

Draw attention advantages&disadvantages in this context

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 4 / 15



What is a SAT solver

Solves a problem in CNF

CNF is an “and of or-s”

(x1 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

Uses DPLL(ϕ) algorithm

1 If formula ϕ is trivial, return SAT/UNSAT

2 ret = DPLL(ϕ with v ← true)

3 if ret == SAT, return SAT

4 ret = DPLL(ϕ with v ← false)

5 if ret == SAT, return SAT

6 return UNSAT

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 5 / 15



SAT solver internals

Conflict clauses

Generated when current assignment doesn’t satisfy a clause

Collection of information leading to conflict

Used to avoid similar wrong parts of the tree next time

Most important parts

Lazy data structures

Learning (and forgetting)

How to pick a variable

When to restart

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 6 / 15



Mancoosi

Package management in FLOSS

Many packages

Some conflict, some depend on others, some give same features

Simplified to user: keep, install, upgrade, remove

Common Upgradeability Description Format (CUDF)

1 Preamble with distribution-specific properties

2 Set of packages: dependencies, conflicts, features, properties

3 User request

Solving CUDF

Optimise for criteria: e.g. least no. changed packages

Give best solution within time limit

Result must satisfy dependencies, conflicts, user requests

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 7 / 15



Outline

1 Context
SAT solvers
The Mancoosi Project

2 CUDF and SAT solvers
Implementation ideas
Why would this work?
Why wouldn’t this work?

3 Conclusions

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 8 / 15



A trivial implementation

Parser

Parses up CUDF, optimisation criteria

Clauses to represent conflicts

Clauses to represent dependencies

Clauses to express if package is real/virtual

Clauses for user request: keep, install, upgrade, remove

SAT solver

Gives a solution — correct, but not optimal

Uses multi-threading

Keeps track of found unitary and binary truths

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 9 / 15



A more refined implementation

Parser

Binary adder for optimality criteria

Cyclicly restricts adder to smaller values

Solves until UNSAT — optimal for a criterion

Solution is optimal for one criterion → backtrack to previous best and
optimise for next criterion

SAT Solver

Constant CNF file as input — contains static needs

Plus a set of optimality constraints — changes over time

Keeps state between SAT and SAT

With help of Parser, some state between SAT and UNSAT

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 10 / 15



Why would this work?

Simplicity

SAT solvers already optimised: no re-invent the wheel

No need to manually multi-thread: it’s in the solver

Must express constraints simply: no repetitions

Right tool for the job: SAT solvers

Good at binary clauses — conflicts&dependencies create these

Binary adders are possible to represent natively — CryptoMS patch

Can save state between runs, no need to solve repeatedly

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 11 / 15



Why wouldn’t this work?

Optimisation&SAT solvers

SAT solvers not very good at optimisation

Binary adder could get very large

Native adder could lead to less effective learnt clauses

Other problems

No. variables could be huge — at least no. versioned packages

Difficult to optimise for no repetitions: hash table expensive

Might need to save more state than unitaries&binaries

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 12 / 15



Outline

1 Context
SAT solvers
The Mancoosi Project

2 CUDF and SAT solvers
Implementation ideas
Why would this work?
Why wouldn’t this work?

3 Conclusions

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 13 / 15



Conclusions

Concluding remarks

SAT is effective at many problems

Configuration management could be one such problem

But effort is needed

Future work

CryManSolver is in preparation

It will implement the above

Will use CryptoMiniSat as back-end

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 14 / 15



Thank you for your time

Any questions?

Mate Soos (UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA)SAT Solvers and Configuration Management 2nd of November 2010 15 / 15


	Context
	CUDF and SAT solvers
	Conclusions

