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Motivations and goals

Motivations

@ Not clear: When SAT solvers effective in crypto?

° Grobner basis?
° Brute-force?
Goals:

@ Show differences between algorithms

@ Demonstrate practical use-cases
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Outline
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Cryptography

Types:
@ Symmetric: key + plaintext — ciphertext
@ Hash functions: text fingerprinting

@ Asymmetric: signature, private encoding

Complexity:
@ Theory: Brute force best attack, rarely proven
@ Clean-room attacks: statistical, complexity-based

@ Side-channel attacks: passive (EM radiation) /active (fuzzing)
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Grobner basis: Faugere's F4/F5

Input set of polys a @ bcd d =0

Grobner basis by echelonisation of large matrix

o Incrementally, as matrix is large

e F5: no redundant calculation
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SAT solvers

Input:
e CNF, an “and of or-s": (xz1V—x3) A (-xaVaxs) A (x1Vxe)
@ Crypto-problem needs conversion

@ E.g. a®bc@® d=0 needs internal var for bc

Uses DPLL(¢p) algorithm

If (formula ¢ trivial) return SAT /UNSAT
ret < DPLL(p with v < true)

If (ret = SAT) return SAT

ret <~ DPLL(¢ with v < false)

If (ret = SAT) return SAT

return UNSAT

000000
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Brute force

Theory:
o Input is set of operations on key, plaintext
o Execute set of operations 2* times

o On average: 2¢7! tries

Practise:
o Some keys may be eliminated (e.g. DES)
e Uses CUDA, FPGA

o Execution very optimised
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Outline

© Comparison of solving methods
o F5vs. SAT
@ SAT vs. Brute force
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Grobner basis vs. SAT solvers

o Upper bound of both: doubly exponential
e Practical behaviour of both: much better than bound

o Grobner basis: lower bound can sometimes be proven
o But practise is still much faster than theory

o No such lower bound for SAT: harder to argument
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SAT solvers vs. Brute force
o Both go through a search tree

o Brute force avoids same parts through division

o SAT avoids same parts through learnt clauses

o Brute force re-computes everything every time
o SAT solvers backjump, keeping partial state

o Internal variables are used to keep state

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 11/25



Example search tree
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SAT solvers vs. Brute force

o For crypto-problems, finding UNSAT = 2*SAT time

e Just like Brute force

o Interesting, because highlights search-tree approach

o Hard to argument from resolution-tree approach
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Outline

© Practical problem solving
@ An example problem
@ Why SAT Solvers?
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Medium /low complexity systems

When they arise:
o Unexpectedly easy or low budget: HFE, HiTag, Mifare

o Side-channel: added information makes system easy

Solving them:
o Brute force: if key small (HiTag2)

o Grobner basis: for hidden low-complexity (HFE)

o SAT: for information-rich problems (side-channel info)
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Why not Grobner basis?

o Uses PC with tens of GB of memory
o Algorithm start-up is non-trivial (minutes/hours)
o Details of algorithm unknown: harder to publish

o Proprietary: Magma expensive
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Why SAT solvers?

Learnt clauses:
o Act as memory
o Apply to different parts of the search tree

Lazy data structures:
o Fast partial back-tracking
o Keep partially computed values in memory

Variable activity heuristics:
o Find good points of entry
o E.g. key bits, shift register states, etc.
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Outline

@ Conclusions
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Conclusions

Concluding remarks:
o SAT: low-complexity ciphers, side-channel attacks

o Grobner basis: HFE, multivariate crypto schemes

Future work:
o Integrate the two
o As pre-, or post-processors to each other

o As in-processors (e.g. Gauss-elim. in CryptoMS)
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Thank you for your time

Any questions?
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