Using SAT Solvers for Cryptographic Problems

Presentation at Microsoft Research Centre, Cambridge

MATE SOO0S

UPMC LIP6, PLANETE team INRIA, SALSA Team INRIA

5th of November 2010

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 1/25



Motivations and goals

Motivations

@ Not clear: When SAT solvers effective in crypto?

° Grobner basis?
° Brute-force?
Goals:

@ Show differences between algorithms

@ Demonstrate practical use-cases

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 2/25



Table of Contents

@ Context

© Comparison of solving methods

© Practical problem solving

@ Conclusions

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography

5th of November 2010

3/25



Outline

@ Context
o Cryptography
@ Solving methods

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 4/25



Cryptography

Types:
@ Symmetric: key + plaintext — ciphertext
@ Hash functions: text fingerprinting

@ Asymmetric: signature, private encoding

Complexity:
@ Theory: Brute force best attack, rarely proven
@ Clean-room attacks: statistical, complexity-based

@ Side-channel attacks: passive (EM radiation) /active (fuzzing)

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010

5/25



Grobner basis: Faugere's F4/F5

Input set of polys a @ bcd d =0

Grobner basis by echelonisation of large matrix

o Incrementally, as matrix is large

e F5: no redundant calculation

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 6 /25



SAT solvers

Input:
e CNF, an “and of or-s": (xz1V—x3) A (-xaVaxs) A (x1Vxe)
@ Crypto-problem needs conversion

@ E.g. a®bc@® d=0 needs internal var for bc

Uses DPLL(¢p) algorithm

If (formula ¢ trivial) return SAT /UNSAT
ret < DPLL(p with v < true)

If (ret = SAT) return SAT

ret <~ DPLL(¢ with v < false)

If (ret = SAT) return SAT

return UNSAT

000000

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 7/25



Brute force

Theory:
o Input is set of operations on key, plaintext
o Execute set of operations 2* times

o On average: 2¢7! tries

Practise:
o Some keys may be eliminated (e.g. DES)
e Uses CUDA, FPGA

o Execution very optimised

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010

8/25



Outline

© Comparison of solving methods
o F5vs. SAT
@ SAT vs. Brute force

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 9/25



Grobner basis vs. SAT solvers

o Upper bound of both: doubly exponential
e Practical behaviour of both: much better than bound

o Grobner basis: lower bound can sometimes be proven
o But practise is still much faster than theory

o No such lower bound for SAT: harder to argument

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 10/ 25



SAT solvers vs. Brute force
o Both go through a search tree

o Brute force avoids same parts through division

o SAT avoids same parts through learnt clauses

o Brute force re-computes everything every time
o SAT solvers backjump, keeping partial state

o Internal variables are used to keep state

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 11/25



Example search tree

R . a‘;;,‘ﬁ‘.ﬁﬁgﬁ
P Il : i i
i R R
4 L L Y N
g i AN AR b
i Bl arr vy ° L u Nl l
o b b b i ¥ b {] I I
J bl ¥ ¥ I I I
t4 U Y |
. 5666 4
E;? ! Y 3|y
: o B By J E§ 8
B %
i ‘41 0 Y
b
i
b
W
0
o
12 /25

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010



SAT solvers vs. Brute force

o For crypto-problems, finding UNSAT = 2*SAT time

e Just like Brute force

o Interesting, because highlights search-tree approach

o Hard to argument from resolution-tree approach

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 13 /25



Outline

© Practical problem solving
@ An example problem
@ Why SAT Solvers?

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography

5th of November 2010

14 / 25



Medium /low complexity systems

When they arise:
o Unexpectedly easy or low budget: HFE, HiTag, Mifare

o Side-channel: added information makes system easy

Solving them:
o Brute force: if key small (HiTag2)

o Grobner basis: for hidden low-complexity (HFE)

o SAT: for information-rich problems (side-channel info)

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 15 /25



Why not Grobner basis?

o Uses PC with tens of GB of memory
o Algorithm start-up is non-trivial (minutes/hours)
o Details of algorithm unknown: harder to publish

o Proprietary: Magma expensive

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 16 / 25



Why SAT solvers?

Learnt clauses:
o Act as memory
o Apply to different parts of the search tree

Lazy data structures:
o Fast partial back-tracking
o Keep partially computed values in memory

Variable activity heuristics:
o Find good points of entry
o E.g. key bits, shift register states, etc.

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 17 /25



Outline

@ Conclusions

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 18 / 25



Conclusions

Concluding remarks:
o SAT: low-complexity ciphers, side-channel attacks

o Grobner basis: HFE, multivariate crypto schemes

Future work:
o Integrate the two
o As pre-, or post-processors to each other

o As in-processors (e.g. Gauss-elim. in CryptoMS)

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010

19 /25



Thank you for your time

Any questions?

MATE Soos (UPMC, INRIA) SAT solvers and Cryptography 5th of November 2010 20 /25



	Context
	Comparison of solving methods
	Practical problem solving
	Conclusions

