SAT Solver architectures

Presentation at FMV, Linz

Mate Soos

Security Research Labs

9th of February 2011

SECURITY
r\‘ RESEARCH

LABS



Motivations and goals

Motivations
@ Architectural choices are not simple

o Rarely talked about, but matter a lot

Goals
@ Present the different choices

@ Shed light on their interactions

D SECURITY RESEARCHLABS



Table of Contents

Context
Architectures

Conclusions

D SECURITY RESEARCHLABS



Context
SAT Solvers
Challenges

D SECURITY RESEARCHLABS



SAT solvers

Input:
e CNF, an “and of or-s”:
(331 V —|£L‘3) VAN (—':L'2 V .’133) VAN (331 V CL‘Q)
o Crypto-problem needs conversion

o E.g. a® bc® d=0 needs internal var for bc

Uses DPLL(y) algorithm
@ If (formula ¢ trivial) return SAT/UNSAT
@ ret + DPLL(p with v + true)
© If (ret = SAT) return SAT
Q ret + DPLL(p with v « false)
@ If (ret = SAT) return SAT
@ return UNSAT

D SECURITY RESEARCHLABS



Example search tree

. N 2
cmEmil
i Qif@”ﬁ Ew Jx@ 8 .
i b (I e
6;“ Iy AR } 7 i
LLGILIL JARISIE
g 1" i i
U iR I I
o
o s 1Y
4| Bi Y odly
Ez a?ﬂs © W ia
o il <]
o |
1t ooy
G[G
M@%
!H 0

D SECURITY RESEARCHLABS 6



Main challenges

Low-level constraints
o Efficient use of memory arch.: cache, page faults, etc.
@ Must work well in multi-threaded: locks, semaphores, etc.

o Compiled code is of importance: compilation issues

High-level problems
o Highly theoretical approaches
o Complex interactions between algorithms
o Randomised algorithms

@ No clear visual or statistical indicators

D SECURITY RESEARCHLABS



Additional challenges

Cut-offs
@ Some algos. can take far too long to finish
o Limit time. .. but solver must remain deterministic
o Make the best of time available

Validity (bugs)
o UNSAT is rarely proven — solution hard to check
o Internal state very large — infection hard to trace

@ Problems very heterogeneous — hidden bugs

D SECURITY RESEARCHLABS



Architectures
Main loop
Simplification algos.
Multi-threaded /distributed solving
Extra functionalities

D SECURITY RESEARCHLABS



Elements to add

Main elements

o DPLL

o Branch literals
o Restarts
°

Learnt clause cleaning

Thread synchronisation

Simplification algos
e Equivalent literals
e Clause subsumption
e Variable elimination

D SECURITY RESEARCHLABS 10



BCP

Must be efficient (70% of time)
e Bit stuffing, hand-rolled memory managers, etc.
o Prefetching, lazy algos

@ Special treatment of small clauses

Completeness vs. speed
o Re-compute glues at propagation?
o Extended impl. graph?

D SECURITY RESEARCHLABS "



Learnt clauses&restarts

Options
o Geom./Luby rest. + clause activities: for packed problems
o Glue-based dyn rest. + glues: for large industrial problems
o Agility-based dyn rest. + glues: for both, but not perfect

o Outer-inner variations of above

Problems
o Important choice: cache behav., complexity of impl.
@ Support multiple vs. speed
@ Which to choose if multiple supported

D SECURITY RESEARCHLABS 12



Scheduling of simplification algos.

In what order?
o They interact...
o Cannot try all combinations: n!

e Intuition/habits/experience

When?
o Once at start-up: e.g. XOR extraction
@ Once every X conflicts: e.g. failed lit. probing
o If needed: SCC if new binary clauses

o AT every conflict: confl. minimisation

D SECURITY RESEARCHLABS 13



Organising simplification algos.

Generally
o Some need occurrence lists: detach & reattach
e Some need to propagate w/o conflict analysis

@ Some benefit from each other

In CryptoMiniSat
@ Group 1: detached long clauses, occurrence lists

o Group 2: Simplified propagation, re-use of propagated
values

D SECURITY RESEARCHLABS 1



Multi-threaded / Distributed solving

Do something different (heterogeneity)
e Support multiple restarts/activities

o Range of magic constants — more testing

Do the same, faster (sharing)
e Forced var setting — redundancy check: O(1)
o Binary clauses — redundancy check: P
o Tertiary clauses — redundancy check: co-NP?
o Larger clauses — provably needed

What else to share?

D SECURITY RESEARCHLABS 15



Extra functionalities

Use solver as a
o Preprocessor
o Library for abstraction-refinement
@ Multi-threaded and distributed variation of above
°

Static analyser

Dynamic analyser

Accumulator of knowledge

D SECURITY RESEARCHLABS 16



Conclusions

D SECURITY RESEARCHLABS 17



Conclusions

@ SAT solvers are complex

o Takes lots of time to write one
o Practise makes perfect
°

But practise leads to habits

Difficult to re-invent everything all the time

D SECURITY RESEARCHLABS 18



	Context
	Architectures
	Conclusions

