
N◦ attribué par la bibliothèque

THÈSE

pour obtenir le grade de

Docteur de l’Institut Polytechnique de Grenoble

Spécialité : Informatique

préparée à
l’INRIA Rhône-Alpes

dans le cadre de l’École Doctorale
École Doctorale Mathématiques, Sciences et Technologies de

l’Information, Informatique

présentée et soutenue publiquement par

Mate Soos

le 6 octobre 2009

Titre
Privacy-preserving Security Protocols for RFIDs

Composition du Jury
Andrzej Duda Président

Grenoble INP — Ensimag
Claude Castelluccia Directeur de Thèse

INRIA Rhône-Alpes
Levente Buttyán Rapporteur

Budapest’s University of
Technology and Economics

Refik Molva Rapporteur
EURECOM

Olivier Billet Examinateur
Orange Labs

Francois Vacherand Examinateur
CEA-LETI

ii

Abstract

RFID tags are small electronic devices using radio-frequency to receive power and
transmit information. They are predicted to be present on almost every item
sold to facilitate scanning and inventorying. Since RFIDs are so small, they can
only use extremely lightweight security protocols, offering a unique challenge to
researchers. For this reason, security protocols for RFIDs have been in the forefront
of academic research in the past years. This thesis outlines what RFIDs are and
describes and analyses multiple RFID security solutions. We present the state of
the art in the field of RFIDs, including RFID systems and hardware and describe
some of the most important RFID security protocols. Next, we show through
the analysis of three recently proposed ad-hoc protocols the difficulty of designing
secure RFID authentication protocols. We then analyse the Di Pietro-Molva private
RFID authentication protocol, detailing its shortcomings and insecurities. Then, we
describe the privacy-preserving RFID identification protocol ProbIP and analyse
its security. An improved version of ProbIP, EProbIP, is also presented, which
counters the insecurities found in the original protocol. Finally, we describe how
low hardware-complexity stream ciphers could be used in RFIDs and analyse such
ciphers using a SAT solver which we improved for this purpose.

Résumé

Les puces RFID sont de petits appareils électroniques qui seront insérées avec une
grande probabilité dans chaque produit commercial. Les RFID étant de petite taille
ne peuvent utiliser que des protocoles de sécurité qui nécessitent de faibles capacitées
matérielles, c’est la raison pour laquelle elles présentent un grand défi pour les
chercheurs. Il en résulte que les protocoles RFID se trouvent au premier-plan de la
recherche académique ces dernières années. Cette thèse parcourt les RFID, présente
et analyse de multiples solutions RFID. Dans la première partie, nous présentons
l’architecture RFID et les protocoles de sécurité RFID les plus importants. Par la
suite, nous étudions le protocole d’authentification et d’identification Di Pietro-Molva
en nous focalisant sur la présentation, en détail, de ses défauts de sécurité. Ensuite,
nous présentons le protocole ProbIP que nous analysons également du point de
vue de la sécurité. Nous proposons une version améliorée du protocole ProbIP, le
protocole EProbIP qui corrige les problèmes de sécurité du ProbIP. Nous présentons
finalement la façon dont il est possible d’utiliser les chiffrements par flot de faible
demande matérielle dans les RFID, et nous analysons ces algorithmes de chiffrement
à l’aide de l’algorithme SAT élaboré spécifiquement dans ce but.

iii

iv

Contents

Introduction 1

I State of the art 3

1 RFID systems 7

1.1 Complexity measures for RFIDs . 7

1.1.1 Gate Equivalents . 7

1.1.2 Battery use . 8

1.2 Standards . 8

1.2.1 ISO/CEI 14443 . 8

1.2.2 EPC Class 1 Gen 2 . 9

1.3 Media Access Control protocols . 10

1.3.1 MAC protocols used in RFIDs 10

1.3.2 The ISO14443A standard MAC protocol 11

1.3.3 The EPC Class 1 Gen 2 MAC protocol 11

1.4 Conclusions . 14

2 RFID security protocols 17

2.1 RFID protocol features . 17

2.1.1 Identification . 18

2.1.2 Authentication . 19

2.2 Privacy-preserving RFID identification 19

2.2.1 Physical layer solutions . 20

2.2.2 Information-theoretic protocols 21

2.2.3 Hash-based protocols . 22

2.2.4 Key-tree based protocols . 24

2.2.5 Protocols based on experimental crypto-primitives 26

2.3 RFID Authentication protocols . 26

2.3.1 Symmetric cipher and hash-based protocols 27

2.3.2 Rabin cryptosystem-based protocols 28

2.3.3 Protocols based on public-key cryptography 28

2.3.4 HB+ and its variants . 29

2.3.5 Physically Uncloneable Functions 29

2.4 Protocol properties overview . 30

2.5 Conclusions . 30

Bibliography 33

v

CONTENTS

II On the difficulty of designing ad-hoc RFID security
protocols 39

3 Analysing the Molva and Di Pietro Private RFID Authentication
Scheme 43
3.1 A short summary of the Molva - Di Pietro scheme 43

3.1.1 Private identification . 44
3.1.2 Tag authentication . 44
3.1.3 Reader authentication . 45

3.2 The DPM function . 45
3.2.1 Key equivalences . 45
3.2.2 Pair-equivalences . 46
3.2.3 The effect of equivalences . 46

3.3 Private identification . 46
3.3.1 Observations about Lemma 2 46
3.3.2 The true number of (alpha p,Vp) pairs needed 47
3.3.3 The bandwidth needed in a common setup 48
3.3.4 Implementation of the Lookup Process 48

3.4 Retrieving k i,j . 49
3.4.1 Exhaustive search . 49
3.4.2 Man-in-the-middle attack . 50

3.5 Design flaws and their remedies . 52
3.5.1 Design flaws . 52
3.5.2 Remedies for the problems found 53

3.6 Conclusions . 53

4 Secret Shuffling 55
4.1 Probabilistic Identification Protocol 55

4.1.1 Protocol description . 55
4.1.2 Example protocol run . 56
4.1.3 Minimum number of packets needed by the reader 56
4.1.4 Parameters . 57
4.1.5 Implementation of the protocol in the backend 57
4.1.6 Implementation of the protocol in the tag 59

4.2 The attack by Ouafi et al. 59
4.3 Conclusions . 60

5 Noisy Secret Shuffling 61
5.1 Error-introducing ProbIP . 61

5.1.1 Minimum number of packets needed by the backend server . . 62
5.1.2 Modified backend server and tag implementations 63
5.1.3 Integration of EProbIP into the EPC standard 64

5.2 Security analysis of EProbIP . 64
5.2.1 Attack vectors . 64
5.2.2 Computationally-intensive approach 66
5.2.3 Packet-intensive approach . 67
5.2.4 Resistance to attacks . 71

5.3 Conclusions . 72

vi CONTENTS

CONTENTS

5.A Calculating propagation and conflict probabilities for Function Multi-
DPLL . 72

Bibliography 75

III Stream ciphers in RFIDs 79

6 An example RFID security protocol using low hardware-complexity
stream ciphers 83
6.1 Stream ciphers . 83
6.2 Two stream cipher-based RFID protocols 84

6.2.1 A simplistic protocol . 84
6.2.2 A more complex protocol . 84

6.3 Conclusions . 85

7 Using SAT solvers to analyse low hardware-complexity stream ci-
phers 87
7.1 Background . 88

7.1.1 SAT solvers . 88
7.1.2 Algebraic Cryptanalysis . 92
7.1.3 Stream Ciphers . 92

7.2 Adapting the SAT solver . 92
7.2.1 Full pre-simplification . 92
7.2.2 XOR support . 94
7.2.3 Gaussian elimination . 97
7.2.4 Dynamic behaviour analysis 102
7.2.5 Optimal attack method . 105

7.3 Adapting the cipher representation 106
7.3.1 Logical circuit representation 106
7.3.2 Generating the logical circuit representation 107
7.3.3 Optimising the representation of LFSRs 108
7.3.4 Optimising the representation of non-linear functions 108

7.4 Implemented Attacks . 109
7.4.1 Calculating the expected running time 109
7.4.2 The attacks . 112

7.5 Conclusions . 115
7.A Learnt clause length statistics . 117
7.B HiTag2 and Crypto-1 extrapolation examples 121

Bibliography 123

Conclusions 129

A Protocoles de protection de la vie privée et de sécurité pour les
RFIDs 131
A.1 Introduction . 131
A.2 Les protocoles RFID . 132

CONTENTS vii

CONTENTS

A.2.1 Identification . 132
A.2.2 Authentification . 134

A.3 Noisy Secret Shuffling . 135
A.3.1 Probabilistic Identification Protocol 135
A.3.2 L’analyse de sécurité du ProbIP 137
A.3.3 Le protocole EProbIP . 138
A.3.4 L’analyse de sécurité de l’EProbIP 139
A.3.5 Conclusion . 140

A.4 L’analyse du protocole d’authentification et d’identification RFID de
Di Pietro et Molva . 140
A.4.1 Le protocole Di Pietro-Molva 141
A.4.2 Équivalences de clés . 141
A.4.3 Remarques en relation avec le deuxième lemme 141
A.4.4 Retrouver k i,j . 142
A.4.5 Conclusion . 143

A.5 L’application des algorithmes SAT pour briser les chiffrements par flot 144
A.5.1 L’adaptation des algorithmes SAT à l’environnement des chif-

frements par flot . 144
A.5.2 Adaptation de la représentation de l’algorithme de chiffrement 145
A.5.3 Attaques réalisées . 148
A.5.4 Conclusion . 151

A.6 Conclusion . 151
Bibliography . 153

viii CONTENTS

Introduction

Radio Frequency Identification (RFID) tags are small electronic devices that are
envisioned to be used in many applications to identify and authenticate themselves
or their users in a variety of scenarios. In this thesis we are focusing on low-end
RFID tags such as EPC tags, that are very restricted in both hardware complexity
and energy consumption. These devices can be used in most cases where bar-codes
are not adequate, such as identifying items without opening their packaging, or
identifying potentially very large number of items (such as a whole truck of items) in
very short time. Naturally, if well-implemented, these technical advancements could
bring potentially large advantages to their users.

Currently, RFIDs are used mostly to trace goods throughout the supply chain
to counter counterfeiting, inventory shrinkage, and unreliable information. In the
future, RFIDs could be used for receipt-less guarantee repairs, automated selective
waste collection, or even by intelligent washing machines to warn if colours have been
mixed in the drum. To realise these possibilities, RFIDs must be cheap, functional,
fast, and be accepted by the general public. All of these requirements must be
satisfied, a very delicate act, as some (such as functionality and cheapness) conflict
which each other, requiring a fine balance.

Problem Statement

The problem treated in this thesis is the privacy and authentication need of RFIDs.
There are many ways of achieving these goals, but currently, authentication is not
generally implemented in RFIDs, and privacy is assured by the destruction of the
tag’s communication ability before it can reach the general public. This effectively
means that tags are used only internally by organisations, mostly for tracing goods
in the supply chain, thereby eliminating many possible use-cases of the tags. In this
thesis we wish to analyse the whys and hows of this problem: why is it so difficult
to create a good RFID protocol, and how the proposed RFID protocols have failed
until now.

Contributions

In the past ten years, a community of researchers have been exploring the possible
RFID protocols both by creating new protocols and by developing theoretical frame-
works in which protocols could be evaluated. The first part of this thesis explores
these practical and theoretical aspects giving an overview of what has been done,
how have previous protocols been broken, and what are are their shortcomings. As
with almost all aspects of RFIDs, communication protocols affect all other aspects:

1

price, functionality, speed, and acceptance by the users. A communication protocol
that does not provide anonymity, for example, is too risky for the general public, as
no one would like to be scanned every time he or she enters into a store, a bank, or
a workplace. On the other hand, a communication protocol that is anonymous but
makes the RFID too expensive also makes the tagged items too expensive thereby
invalidating the use-case for RFIDs.

In the second part of this thesis, we analyse the protocol by Di Pietro and
Molva and we propose and analyse two new protocols: the ProbIP and the EProbIP
protocols. All three of these protocols offer privacy-preserving identification, and the
Di Pietro-Molva protocol also offers authentication. During our analysis of the Di
Pietro-Molva scheme, we demonstrate that it fails in some of its objectives, notably
in providing secure private identification. The ProbIP protocol is also shown to be
insecure, hence an improved version of it, the EProbIP protocol, is proposed. This
improved version relies on the more difficult randomly generated NP-hard problem
to provide its secrecy, thereby strengthening it against attacks.

Finally, in the third part of this thesis, we elaborate on how to use and analyse
low hardware-footprint stream ciphers that have been created specifically for such
use-cases as RFIDs. For our analysis of these ciphers, we use and adapt the MiniSat
SAT solver to the environment of stream ciphers and give proof that using the
demonstrated methodology, it is possible to break two widely deployed types of
RFID tags’ security. The methodology used is general, capable of analysing or even
breaking other ciphers as well: a potential application of its abilities could be applied
to, for instance, the KeeLoq cipher, used in car immobilisers.

Organisation

The thesis is organised into three parts. The first part deals with the state of the art
in the area of RFIDs: the RFID systems currently deployed (Chapter 1) and the
RFID security protocols that have been developed in previous research (Chapter 2).
The second part of the thesis deals with the difficulty of designing RFID protocols.
In this part, we first demonstrate some insecurities of the Di Pietro-Molva protocol
(Chapter 3), then present two of our protocols, ProbIP (Chapter 4) and EProbIP
(Chapter 5). The third and final part of the thesis deals with standard stream ciphers
in RFIDs, where we present how to use low hardware-complexity stream ciphers
in RFIDs (Chapter 6) and then analyse these stream ciphers with advanced SAT
solvers (Chapter 7). Finally, we conclude this thesis.

2

Part I

State of the art

3

In this part of the thesis, we concentrate on the state of the art of RFIDs. Since
RFIDs are such a large field of research, there is ample literature on their hardware
and software layers. There are many different types of RFIDs, with varying use-cases
and successes. Some, such as the first RFIDs used in Wold War II to identify
incoming aircraft, has long been forgotten. Others, such as the Mifare access control
system, first deployed in 1996, is still in use in many large cities’ public transportation
systems. In this part of the thesis we wish to first describe these systems, and then
give a survey of all the research proposals on how certain security aspects could be
implemented on these RFIDs. Academic security research on RFIDs is about 20
years old, with plenty of different protocols and schemes. We wish to elaborate on
the most important schemes, giving a history and overview of their evolution.

Organisation

This first part of the thesis is made up of two chapters. In Chapter 1 we give an
overview of RFID hardware and systems. Then, in Chapter 2 we give an overview
of RFID security protocols: we describe the security goals and then go through all
significant protocols that were designed to achieve these goals.

5

6

Chapter 1

RFID systems

In this chapter we explore what the literature calls an RFID system. We will see
that there are, in fact, multiple definitions two of which we will explore in this thesis.
There are many ways in which to categorise RFID systems: the standards they use,
the radio frequency they use, their complexity and their purpose. In this chapter we
explore these different aspects.

Organisation

In Sect. 1.1 we explore the different kinds of complexity measures for RFIDs. Then,
in Sect. 1.2 we describe the two most influential RFID standards: the ISO14443 and
the EPC Class 1 Gen 2 standard. In Sect. 1.3 we elaborate on the Media Access
Control (MAC) protocols used by these two standards. Finally, in Sect. 1.4 we
conclude this chapter.

1.1 Complexity measures for RFIDs

There are essentially two different complexity measures for RFIDs: their imple-
mentation complexity and their battery use. Implementation complexity is usually
expressed in Gate Equivalents (or simply GEs), while battery use affects the tag’s
lifetime and its capabilities. In this section we describe both of these measures and
their associated use cases.

1.1.1 Gate Equivalents

The Gate Equivalent (GE) is a manufacturing technology independent complexity
measure for digital circuits. The silicon area of a NAND gate on today’s CMOS
technology constitutes one GE and all other circuit parts can be calculated in terms
of such GEs. The GE count is a very important measure of RFIDs: if it can be
reduced without sacrificing functionality, more can fit on a given silicon plate and so
the tag becomes cheaper to manufacture.

Though the GE count makes it easier to evaluate the price of an extra circuit on
an RFID, it is sometimes counter-intuitive to use, and so care must be taken when
using it. For example, flip-flops (i.e. digital memory bits) are relatively expensive in
terms of GEs, while digital circuit parts (i.e. and-, or-, etc. gates) are relatively cheap.
The direct consequence of this is that thinking in terms of computational complexity

7

CHAPTER 1. RFID SYSTEMS

instead of implementation complexity is counter-productive when evaluating the
monetary cost of RFID security protocols.

1.1.2 Battery use

RFIDs can be grouped into the three categories according to their battery require-
ments: active, semi-passive and passive tags, according to their battery use.

Active Active RFIDs use their on-board battery for both communication and
processing. These RFIDs can have very large ranges as they employ transmitters,
though their lifetime can be very limited, as they use up their battery at a very high
rate. These tags are used, for instance, on shipping containers, where the battery
can be very large, and can supply enough energy for the lifetime of such a container.

Semi-Passive Semi-passive RFIDs’ communication takes place using the reader-
provided signal (through passive back-scatter), but processing uses the tag’s on-board
battery. These tags can typically operate at a longer distance than those that are
fully passive, however, they have a limited lifetime: as soon as the battery empties,
the tag becomes non-functional. These tags are used, for instance, in automatic toll
collection on highways.

Passive Passive RFIDs are powered by the reader at all times. These devices have
no on-board power, and take all their energy (including energy to communicate and
process data) from the signal received from the reader. These tag types are the
cheapest to manufacture and the easiest to maintain, but they can only be used
in the proximity of the reader, since they must use either passive back-scatter or
inductive coupling for communication with the reader. In this thesis we mainly focus
on these, passive RFIDs,

1.2 Standards

There are two main standards for contactless Integrated Chips (ICs). The ISO14443
for proximity contactless cards and the EPC Class 1 Generation 2. In this section
we go through these two standards, highlighting where they meet and differ.

1.2.1 ISO/CEI 14443

The ISO/CEI 14443 standard [37] defines the tag as the proximity integrated chip
card (PICC) and the reader as a proximity coupling device (PCD), both of which
work using the carrier signal at 13.56MHz. The reader and the tag can communicate
up to 10cm from each other, though the maximal nominal distance for a specific
implementation can be shorter. The PICC usually takes the 7810 ID-1 card form
factor (i.e. credit card-size) though sometimes it is smaller, such as the Visa micro
tag key fob. Since the PICC is so close to the reader and since the PICC is relatively
large, there is plenty of available processing power on the PICC: some cards can even
carry out complex, public-key operations.

8 1.2. STANDARDS

CHAPTER 1. RFID SYSTEMS

The ISO14443 standard is used for micropayment in transportation systems (e.g.
the NXP’s MIFARE system), building access control (e.g. the HiTag2 system), and
bank cards (e.g. Visa Paypass, Chase Blink). For these uses, it is not required to
identify large amounts of tags in a very short time, though speed is a factor in public
transportation. The ISO14443-based bank card systems integrate the ISO7816-* (i.e.
smart card) standards, giving rise to advanced functionalities, but staying compatible
with the already established infrastructure of contact-based smart cards.

There are two ISO14443 communication standards: Type A and Type B. Type
A is essentially used only by Philips (now NXP) cards, while Type B is used by all
other manufacturers. Both types use the 13.56MHz carrier frequency, and use the
subcarrier frequency of fc/16 to fc/128 (where fc is the carrier frequency) depending
on which bandwidth (106kbit/sec to 847kbit/s) the tag and the reader agreed on.
The only difference between the two standards is in the coding and modulation type.
The used codings and modulations are amplitude shift keying (ASK), Miller coding,
non-return to zero (NRZ) and binary pulse shift keying (BPSK).

1.2.2 EPC Class 1 Gen 2

The Electronic Product Code (EPC) is a set of standards of which the most interesting
is Class 1 [21], called “Identity Tags”. This class has had two generations, the second
of which is the currently used one. The EPC Class 1 Gen 2 defines a tag and a reader
(referred to as interrogator in the EPC literature) working in the UHF (Ultra High
Frequency) range. The actual range used depends on the continent and sometimes
even the country, according to local frequency regulations. In the European Union
the range used is between 865.5MHz and 867.6MHz, and in the US it is between
902MHz and 928MHz. The nominal maximal working range of the standard is several
meters, which means that the transmitted power to the tag from the reader is very
low, leading to very simple tags. The combination of long working range and simple
tags is a major difference between the ISO14443 and the EPC standards.

The use-case for the EPC Class 1 Gen 2 standard is for tagging goods: this
standard was specifically designed to be put on almost every product sold. EPC tags
are therefore very cheap, in the range of $0.10 per tag and can be read extremely
fast, theoretically up to 1000 tags/sec by large, industrial readers. Tagging all goods
would allow for very fast inventorying, precise stock counts and real-time monitoring
of the supply chain. For these reasons, at least in the near future, retailers are
expected to experience the most profit from using EPC tags.

The EPC Class 1 Gen 2 is a very broad standard, specifying not only the tags
and readers, but also the very large backend used to process the large amount of
information provided by the readers. This backend is crucial for the success of the
standard, as the goods come from many different manufacturers, typically go through
multiple distribution points, and are of vast quantity, needing very large, distributed
systems that can manage non-trivial authorisation boundaries.

The standard uses many different modulation techniques to encompass different
implementations. The reader-to-tag radio interface for example allows for three
different modulation types (all subtypes of amplitude shift keying) while the tag-to-
reader radio interface allows for both amplitude and phase shift keying. Compatibility
is maintained by requiring the reader to understand all tag modulation types and

1.2. STANDARDS 9

CHAPTER 1. RFID SYSTEMS

vice-versa. Data encoding in the reader-to-tag direction is pulse interval encoding
(PIE), and in the reverse it can be FM0 or Miller-based. The data rate in the
reader-to-tag direction is between 26.7 to 128kbit/s and in the other direction, it
varies between 5-320kbit/s for Miller-based and 40-640kbit/s for FM0 based data
encodings.

1.3 Media Access Control protocols

When multiple entities need to communicate at the same time they can cause
interference prohibiting communication. Such an interference between two tags is
called a collision in the RFID literature. To circumvent this problem, there must be
a Media Access Control (MAC) protocol used to control who, when and where can
talk on which channel(s). This problem is common to all wireless communication
protocols such as Wi-Fi, Bluetooth, and RFIDs. In this section we first outline the
two MAC methods used by RFID systems, and then we describe in detail how the
EPC and the ISO14443A RFID protocols handle MAC.

1.3.1 MAC protocols used in RFIDs

There are two MAC protocols used in RFIDs, one used by the readers to avoid
collisions between each other, and the other by the tags to avoid collisions between
themselves. These three MAC protocols use different aspects of the communication
to distinguish between entities that need to communicate at approximately the same
time: the first uses the difference in physical location and angle of orientation, the
second the difference in the communication frequency, and the third the difference in
the timing of the communication.

Space Division Multiple Access

In Space Division Multiple Access (SDMA), the space is set up such that entities
occupy different physical fields. Since the entities can communicate only in different
areas around themselves, this solves the problem of multiple access. In RFIDs, it
is relatively easy to make a reader that can only communicate in a very selective
part of space around itself, thus easing the problem of interference between readers.
However, RFID tags are normally made such that they occupy an evenly distributed
space around themselves, thus this solution does not solve the problem of interference
cased by two (or more) tags near each other.

Frequency Division Multiple Access

In Frequency Division Multiple Access (FDMA), entities can talk in multiple fre-
quencies, and they choose the frequency to talk on in a manner such as to reduce
interference with other communicating entities. FDMA is used in for instance by the
EPC Class 1 Gen 2 standard to reduce interference and speed up identification.

10 1.3. MEDIA ACCESS CONTROL PROTOCOLS

CHAPTER 1. RFID SYSTEMS

Time Division Multiple Access

In Time Division Multiple Access (TDMA), the time is divided such that only
one entity may talk at any given time. The negotiation of time slices is the most
challenging part in this system. Both EPC Class 1 Gen 2 and ISO14443 standards
use TDMA to ultimately resolve media access control conflicts as the combination
of SDMA and FDMA are usually not enough. The TDMA-based solution is both
cheap to implement and suits the typical system configuration of a higher-powered
and more intelligent entity (the reader), and multiple, less sophisticated entities (the
tags). The only drawback is the reduced speed of identification: if many tags are in
the field of the reader, they must divide the time among themselves, slowing down
the overall process.

1.3.2 The ISO14443A standard MAC protocol

The ISO14443A standard uses TDMA as the MAC protocol, a protocol which it calls
singulation, and is mandatory to use to avoid collisions. The singulation protocol
is deterministic, the reader explores the Unique Identifier (UID) of the tag in a
bit-by-bit tree-walking fashion. This protocol is simple to implement on the tag and
is relatively time efficient if the UID is short. However, since the reader calls the
different tags using their unique UIDs, the tags cannot remain anonymous during
singulation. Furthermore, since the tag UID is repeated during the protocol by the
reader, and the reader has much greater range than the response emitted by the tag,
the UID can be eavesdropped from a safe distance by a malicious reader.

An example protocol run of the tree-walking algorithm is in Fig. 1.1. Bit-collisions
occur when at least one tag sends a binary “0” and the other(s) a binary “1”. These
collisions are detected using channel coding. When a collision occurs, the reader
must choose which branch to follow. The reader thus explores a chosen part of the
binary collision-tree during the protocol.

1.3.3 The EPC Class 1 Gen 2 MAC protocol

The TDMA collision-avoidance protocol used by EPC Class 1 Gen. 2 standard [21]
is also called singulation, and is mandatory to use to avoid collisions. The course
of this protocol is important since it may leak some information that may threaten
security or privacy. EPC uses a probabilistic algorithm which does not ensure a fixed
time for the singulation of all the tags in the field. It implements the principle of the
management of time slots known as the ALOHA protocol.

An example run of the EPC singulation protocol is present in Fig. 1.2. Invento-
rying of the tags around the reader begins with a Select command from the reader.
This command determines the tag population that will take part in the process.
This selection is done via the “SL” or “inventoried” flag to separate tags in two
populations A and B. The selection can also be done on a specified part of the tags
memory (EPC, TID or User memory) with a mask which can be fully defined in the
command.

When the reader has selected the subset of tags, it can launch the singulation
with the Query command. The command contains a parameter Q which defines
the 2Q − 1 time slots. When the tags have received the Query, they pick a random

1.3. MEDIA ACCESS CONTROL PROTOCOLS 11

CHAPTER 1. RFID SYSTEMS

Start of ISO14443A singulation

Current UID is Ø

Bit-collision at position 4

Current UID is 010

UIDs starting with 0100

Bit-collision at position 8

Current UID is 0100101

UIDs starting
with 01001010

No more collisions

Current UID is 010010101111

UIDs starting
with 01001011

...

UIDs starting with 0101
...

Figure 1.1: Example ISO14443A singulation protocol, where the UID length is 12.
During singulation, there are two collisions, one at the 4th bit of the UID, and one
the 8th. The found tag’s UID is 010010101111. There could be many tags in the
vicinity of the reader, as there might have been many more collisions in the other
(unvisited) parts of the tree.

Figure 1.2: An example run of the EPC Class 1 Gen. 2 standard’s singulation protocol.
In this run, a tag randomly selects 0 as its slot-counter, and so it immediately replies
to the Select command of the reader with a random number RN16 generated by the
on-board Pseudo Random Number Generator (PRNG). There are no collisions, so
the reader replies with an ACK command, the tag sends its EPC code, and some
other data (PC/XPC), plus the error-checking Cyclic Redundancy Check (CRC)
code. If the EPC code is valid, the reader can further issue the QueryRep command.
If the EPC is invalid, the reader issues a NAK (Not Acknowledge) command instead.

12 1.3. MEDIA ACCESS CONTROL PROTOCOLS

CHAPTER 1. RFID SYSTEMS

value in the range [0, 2Q − 1] which determines the time-slot where they will reply.
Tags that pick zero reply immediately with a 16-bit random number RN16, then if
there is no collision, the reader acknowledges the tag reply with an ACK command
containing the received RN16. After the ACK command, the tag answers with its
EPC code and inverts its “inventoried” or “SL” (selected) flag.

To change the time-slot after an EPC reply from a single tag, or after a collision
from several tags, or even after an empty slot, the reader sends a QueryRep that has
the consequence of decreasing all tags’ time-slot counters. The reader can also send
a NAK command after the answer of the tag if it did not understand the EPC.

The Select command

The Select command is mandatory to define the subset of tags in the field which
will take part in the inventory. This subset can be determined by applying a mask
in any bank of the memory of the tag (e.g. EPC, user memory, etc.) with a fixed
position (“pointer” parameter) and/or length (“length” parameter). Only the tags
which have the value of the mask at the defined part of the memory will be activated
for the inventory. The “truncate” parameter enables to limit the length of the EPC
code which later will be replied by the tag.

The Query command

The Query command initiates and specifies an inventory round. This command lets
the reader define miscellaneous parameters of the physical layer such as the data rate
of the response. The main parameter is the number Q ∈ [0, 15], which determines the
2Q− 1 time slots. As soon as the Query command is received by the tag, it initialises
its slot-counter with a random number from its on-board Pseudo-Random Number
Generator (PRNG), called RN16 in the EPC standard. At each new QueryRep
command received from the reader, the tag decrements its slot-counter. If the
slot-counter has reached zero, it immediately replies with another random number,
again drawn from RN16, and a parity-check code CRC-5.

The properties to which the random number generator RN16 must adhered to is
defined in the EPC standard:

• Probability of a single RN16 : The probability that any RN16 drawn from
the RNG has value RN16= j, for any j, is bounded by 0.8/216 < P (RN16
= j) < 1.25/216 .

• Probability of simultaneously identical sequences : For a tag population of up to
ten thousand tags, the probability that any two or more tags simultaneously
generate the same sequence of RN16s shall be less than 0.1%, regardless of
when the tags are energised (i.e. put in the field of the reader).

• Probability of predicting an RN16 : An RN16 drawn from a tag 10 ms after
power-down shall not be predictable with a probability greater than 0.025%
if the outcomes of prior draws from the tag RNG, performed under identical
conditions, are known.

1.3. MEDIA ACCESS CONTROL PROTOCOLS 13

CHAPTER 1. RFID SYSTEMS

The ACK command

A reader sends an ACK to acknowledge a single tag. This command echoes the
RN16 of the tag reply. If the tag receives an incorrect RN16 then it remains in its
inventory mode.

After an ACK, the tag answers with the concatenation of its PC/XPC, EPC, and
finally a CRC-16 to check the transmission. The PC/XPC parameter defines the
length of the EPC, the user memory (enabled or not), and if the application referred
to as the “EPC application”. The EPC code is the unique identifier of the tag which
is used to track items and as a consequence it is the basis of the privacy issue in the
EPC standard. The CRC-16 is used to reduce the possibility of faulty transmissions.
After the transmission, the tags invert their “SL” (SeLected) or “inventoried” flags.

The QueryRep and QueryAdjust command

The QueryRep command, as shortly described previously, instructs the tags to
decrement their slot counters and if the slot reached zero, to modulate an RN16 and
the CRC-5 to the reader. QueryRep is the command used to move to the next time
slot after an EPC reply, a collision or an empty time slot.

The QueryAdjust command adjusts the parameter Q without changing any other
round parameters. Tags then have to again pick a random value between 0 and
2Q − 1 and load it in their slot counter. Without this command, if the parameter
Q was chosen by the reader to be too low (underestimating the tag population),
the reader would not be able to change Q, thus rendering the identification of tags
infeasible. For instance, if Q was chosen as 1, there would be exactly 1 slot, and if
there were multiple tags in the vicinity of the reader, they would always collide, thus
rendering the reader unable to identify either of them.

The NAK command

The NAK command shows to the tags a non acknowledgement of the reader. Conse-
quently, tags have to ignore the previous command of the reader.

The Access commands

To access to the memory of a specific tag that has just been singulated or to send
it a specific command such as the Kill command, the reader asks the tag via its
RN16 to pick and reply with a new 16-bit random number (command ReqRN) called
“handle”. This new handle becomes the new pointer to the tag and then the argument
of the Access command to access the tag’s memory.

1.4 Conclusions

RFID hardware is complex and rather unnatural for those who have no experience
with hardware design. For instance, it was a common belief in the early stages of RFID
security research that hash functions were ideal for RFIDs, as they are considered fast
and efficient (i.e. having a low computational complexity) on commodity computer
hardware. This, however, was shown to be a false hypotheses by Feldhofer and

14 1.4. CONCLUSIONS

CHAPTER 1. RFID SYSTEMS

Rechberger [22]. Similarly, it is rare to see RFID security proposals that take into
account the anticollision mechanisms of the standards, thereby ignoring the privacy
problem that these cause. A proper investigation of the RFID hardware is therefore
essential for any researcher working in the field of RFID security.

1.4. CONCLUSIONS 15

CHAPTER 1. RFID SYSTEMS

16 1.4. CONCLUSIONS

Chapter 2

RFID security protocols

RFID security protocols are used to achieve two main goals: private identification
and authentication. Private identification is needed to preserve the privacy of the
tag owner, and authentication is useful for access control, or authenticity test (e.g.
for guarantee repairs). There are many security aspects regarding these two goals:
traceability, secure and repeatable authentication, authentication without shared
common secrets, the list is long. In this chapter we define the terms and problems,
then focus on the most prominent protocols and their security aspects.

There are many ways to categorise RFID protocols. A possible way to do so
would be to categorise them according to their hardware complexity on the tag side,
or on the reader side. It would also be possible to categorise them according to the
kind of cryptographic algorithm they employ, or the kind of services they provide.
However, whichever categorisation we take, some protocols will not fit into any, and
some will fit into into multiple categories. In this chapter we categorised protocols
according to the main the services provided, and then we sub-categorised them
according to the employed algorithms. Some protocols provided multiple services —
these protocols were listed according to their main service.

Organisation

Firstly, in Sect. 2.1, we describe the definitions used throughout this chapter. Next,
in Sect. 2.2 we elaborate on why privacy is so important for RFIDs and how it could
be achieved. We then describe some of the most influential RFID authentication
protocols in Sect. 2.3. Finally, in Sect. 2.4 we compare the aforementioned protocols
using a feature-comparison table and in Sect. 2.5 we conclude this chapter.

2.1 RFID protocol features

In this section we give a short description of the protocol features relevant for RFIDs.
Although these features are not unique to RFIDs, their implementation is particular
to the setting, given the range of features and restrictions of RFIDs.

17

CHAPTER 2. RFID SECURITY PROTOCOLS

2.1.1 Identification

Identification is the act of associating a communicating entity with an identifier in
the system. For instance, when a reader communicates with an EPC tag, the tag
tells its EPC code, an identifier that can be looked up in the EPC code database.
Identification does not make sure that the identifier sent is not maliciously sent —
indeed, the EPC code sent by EPC tags can be easily spoofed by anyone with the
proper equipment.

Identification can be Untraceable, Unlinkable, Forward-secure, and Anonymous.
We now shortly describe these features according to Pfitzmann and Köhntopp [57],
put in the context of RFID tags.

Anonymity Anonymity, in the context of RFID tags is the state of being not
identifiable within a set of tags, the anonymity set. The anonymity set is the set of all
possible tags. Therefore, a tag may be anonymous only within a set of potential tags,
its anonymity set, which itself may be a subset of all tags worldwide. Anonymity is
the stronger, the larger the anonymity set is and the more evenly distributed the
tags are within the set.

Untraceability Suppose that an adversary is able to accumulate logs of tag-reader
interactions, i.e., a (partially) successful protocol executions. Further, suppose that
an adversary has accumulated a set L1 of execution logs of a protocol between various
tags and readers, and the adversary has access to the set L2 of execution logs of the
same identification protocol between one specific tag Tj and various readers. The
identification protocol is said to provide untraceability, if the adversary cannot decide
whether some of the logs in L1 relate to Tj with a higher probability than a random
guess.

Unlinkability Unlinkability of two or more items (e.g. tags, tag messages, tag
actions, . . .) means that within the RFID system, these items are no more and no
less related than they are related concerning the a-priori knowledge. This means that
the probability of those items being related stays the same before (a-priori knowledge)
and after the run within the system (a-posteriori knowledge of the attacker). E.g.,
two messages are unlinkable if the probability that they are sent by the same tag is
the same as those imposed by the a-priori knowledge.

Forward privacy Suppose that an adversary has access to the inner state of a
tag Tj, e.g. by physically compromising Tj, reading out all its memory. Also, let
us suppose that the adversary has collected a set L1 of past execution logs of the
protocol between various tags and various readers. Then, an authentication protocol
is said to provide forward-secrecy, if an adversary is unable to tell which execution
of the authentication protocol relates to T other than with negligible advantage over
a random guess.

Among these notions of privacy, the following implications can be identified [68]:

Forward privacy ⇒ Unlinkability ⇒ Untraceability ⇒ Anonymity

18 2.1. RFID PROTOCOL FEATURES

CHAPTER 2. RFID SECURITY PROTOCOLS

2.1.2 Authentication

To make sure that the entity sending the identifier A is indeed entity A, authentication
is required. Authentication is the act of making sure that the other partner is indeed
the partner it claims to be. For authentication to take place, the entity wishing to
authenticate to the other party must contain a secret whose knowledge can be verified
by the other party. We say that the authentication is unidirectional when either the
reader authenticates the tag, or the tag authenticates the reader. Authentication is
mutual when both the tag authenticates the reader and the reader authenticates the
tag.

Since most RFIDs have no way of notifying the owner whether the authentication
with the reader was successful or not, unidirectional authentication between the tag
and the reader is often meant in the sense that the reader authenticates the tag.
Nevertheless, mutual authentication has its benefits, for example, if the tag carries
some secret data such as single-use discount coupons.

Authentication requires either randomisation or tight time synchronisation to
prevent so-called “replay attacks”. In a replay attack an adversary eavesdrops on the
communication between reader and tag, stores the communication, and later replays
the communication to impersonate a tag or a reader. Time synchronisation in RFIDs
is rarely used as it would require expensive hardware on the tag, such as a battery.
Therefore, randomising the protocol (through random challenges) is the generally
accepted way to ensure freshness in the RFID setting. The challenge is usually sent
from the reader to the tag (for tag authentication) before further communication,
and it not only ensures the freshness but can also be used to make subsequent data
exchanged dependent on the challenge. For mutual authentication, a challenge must
be sent by both parties.

2.2 Privacy-preserving RFID identification

People dislike to be identified, especially on a large scale. However, when need be (e.g.
when using a pay-per-use service), a fast and easy way to identify and authenticate
oneself is very important. RFIDs could help fill this role as they are small, resilient
to tear and wear, and operate at a distance, without line of sight. These advantages,
however, can also be used against RFIDs: since they are small, it is very difficult to
use well-established cryptographic algorithms, and since they operate without line of
sight, it is very hard to hide or deactivate them. People are used to the notion that
if something cannot be seen, heard, or physically felt, it is private. RFIDs, on the
other hand, can be as small as a grain of sand and use radio frequencies that are
imperceptible to humans.

Since RFID readers are aimed to be used in every store, and RFID tags are
aimed to be put on every produced item, tags and readers are easily obtainable,
small, and cheap. This means that anyone can obtain or even make one. Some have
even experimented making very sensitive readers, that could capture tags’ IDs as far
as 4 meters away when the nominal reading range for the tag was only 10cm [42].
Readers can also be made to be totally passive if another (e.g. legitimate) reader is
nearby. This means that misuse can be extremely hard to detect.

The imperceptibility and technical simplicity of RFIDs makes them uniquely

2.2. PRIVACY-PRESERVING RFID IDENTIFICATION 19

CHAPTER 2. RFID SECURITY PROTOCOLS

dangerous. The potential for RFID misuse is very real: for example, in 2003 the
garment maker Benetton equipped all its clothes with RFIDs and then used the
customer’s currently worn clothes as identification to offer other clothes [15]. This
misuse plainly ignored the privacy of customers and lead to large negative publicity
for the firm.

There are multiple definitions of RFID privacy. A well-known one is by Ohkubo et
al. [43]. They define Indistinguishably and Forward security and then show that their
scheme is indistinguishable and forward secure according to their definitions. Juels et
al. define privacy in another way [41]. In this model, an RFID system is secure if an
adversary has a non-negligible chance of distinguishing between two tags in a clearly
defined Privacy Experiment. There are multiple refinements of the Juels model, e.g.
one by Ouafi et al. [53], who for instance put different constraints on the adversary.
A more complete but also more complex definition is by Vaudenay [68] who considers
different types of attackers, namely STRONG, DESTRUCTIVE, FORWARD, WEAK
and NARROW and then demonstrates protocols that resist attacks by certain types
of attackers.

The problem of privacy in RFIDs could be countered either on a physical or on a
communication level. In this section we first examine the physical-layer solutions,
then describe the four main types of security protocols that aim to protect the tag’s
privacy: information-theoretic protocols, hash-based protocols, key-tree protocols,
and experimental protocols.

2.2.1 Physical layer solutions

There are very few physical layer solutions for preserving RFID privacy. These
solutions all operate on the hardware, mostly radio-frequency level, that is, they
either block, selectively allow, or deactivate the communication between the tag and
the reader.

Faraday cage A simple solution for protecting the privacy of RFID owners is
to put the item containing the RFID into a Faraday cage, i.e. a wire mesh that
blocks all radio communication. This solution is very effective, however, it can be
very inconvenient, as the tag would need to be taken out of the container every
time it needs to be used. Furthermore, some tags cannot be put inside containers,
for example, RFIDs hidden inside jackets or trousers. This method of protection
is therefore infeasible for many items to be equipped with RFIDs, but it could be
effective for certain objects, such as RFID-equipped passports.

Blocker tag The blocker tag by Juels et al. [39] is an advanced RFID tag that
interferes with the anti-collision mechanism (see Sect. 1.3) of the RFID standards,
thereby selectively allowing some communication between tags and readers. For the
selection of tags and readers that can communicate, privacy zones can be defined,
and searching for tags outside these pre-entered limits is prohibited. The advantages
of the blocker tag solution is cheapness, effectiveness, and convenience for the end
users. The disadvantages are to do with privacy management: if too few tags are
allowed to communicate with too few readers, then the potential that RFIDs could
bring cannot be materialised. On the other hand, if the privacy controls are too lax,

20 2.2. PRIVACY-PRESERVING RFID IDENTIFICATION

CHAPTER 2. RFID SECURITY PROTOCOLS

the privacy of the owner could be endangered. Therefore, if used as an everyday
item, managing the blocker tag’s privacy rules would be difficult and most people
would find it too complex to use.

Noisy tag The noisy tag by Castelluccia and Avoine [16] is a tag that is synchro-
nised with the reader and continuously emits radio signals that add noise to the
channel. Since the reader is synchronised with the noisy tag, it can substract the
noise from the signal, recovering what was on the channel. This solution effectively
bars anyone from listening on the channel, thus it is very useful to hide secrets
such as the access PIN exchanged between the tag and the reader. However, for
protecting the privacy of the owner, the noisy tag must be worn all the time, and
it must manage the privacy settings of the user. Therefore, noisy tags could fill a
similar role as blocker tags, but would also inherit similar problems: they would
need to be worn all the time, and managing their privacy rules would be non-trivial.

Noisy reader The noisy reader by Savry et al. [62] is a reader that emits noise on
the radio channel, much like the noisy tag does, and substracts the noise internally
to retrieve the information that was originally on the channel. The noisy reader is
better than the noisy tag in that it does not need synchronisation with the reader,
however, it cannot be transported as easily as the noisy tag. A further advantage of
the noisy reader is that it has a prototype implementation, whereas for the noisy
tag, implementation is not as straightforward [33].

Kill PIN The Kill PIN approach is currently used by the EPC Class 1 Gen 2
standard: if the tag is given a tag-specific 32-bit PIN code, the communication
capabilities of the tag are damaged (through the overloading of a part of the circuit)
and the tag cannot be used any more. This solution is easy to implement and is
secure as long as every tag is deactivated before the customer starts to use it (i.e.
at the checkout counter or when it is put on the shelves). The problem with this
solution is that every benefit that the tags could bring other than supply-chain
management (e.g. automatic waste recycling, receipt-less warranty repairs, etc.)
becomes impossible.

2.2.2 Information-theoretic protocols

Information-theoretic protocols simply withhold information from the attacker such
that only the legitimate reader can identify the tag. The most simple way of
implementing such a protocol is by Juels [38], in which tags keep a set of randomly
chosen pseudonyms α1, α2, . . . , αn, and use them one after the other when identifying
themselves to a reader. Since the reader is aware that pseudonyms are used to hide
the real identity of the tag, it causes no problems for the reader to identify the tag.
An eavesdropper cannot distinguish that the observed α’s belong to the same or to
different tags. However, since the tag’s memory is limited, it can only store a limited
n number of pseudonyms. After these have been exhausted, the tag must re-use an
already used pseudonym, thereby becoming traceable.

The advantage of information-theoretic protocols is that they are guaranteed to
be secure until a certain point. The problem with them, however, is that they all

2.2. PRIVACY-PRESERVING RFID IDENTIFICATION 21

CHAPTER 2. RFID SECURITY PROTOCOLS

Reader R Tag TID

Database L: {. . . , (ID, si),. . . } Secret state: si

Identify −→
ai = G(si)
si+1 = H(si)

←− ai

find (ID, si) ∈ L
s.t. G(si) = ai

Figure 2.1: The OSK protocol. The tag generates its pseudonym ai, sends it to
the reader, and updates its current state si. The reader, using its internal database
containing all the tags, finds the entry that matches the received ai.

loose their security after a limited number of identification attempts. To alleviate
this problem, the pseudonym-rotation protocol updates its internal pseudonyms after
every authentication with a legitimate reader. This unlinks the current state of
the tag from its old state, but the tag can again be traced by simply demanding
identification n number of times.

2.2.3 Hash-based protocols

The most well-known privacy-preserving RFID protocol using hashing is the OSK
protocol [43]. The protocol can be characterised as present in Fig. 2.1.

The advantages of the OSK protocol are twofold. First, it provides privacy for
an unlimited amount of identification attempts, unlike the information-theoretic
protocols. Second, it is secure if the functions H and G are preimage-resistant. There
are many disadvantages associated with the protocol, however. First, and foremost,
the tag can simply be queried by a malicious reader for a long period, after which the
state has evolved, let’s say, m times. To find which tag that sent ai+m, the backend
(which has n tags) needs to iterate function H and execute G for each tag in the
system exactly m times. Therefore, it takes 2mn operations to find the tag, which
can quickly take too much time with large enough populations and large enough m.

There have been many iterations of the OSK scheme to alleviate these problems.
One such iteration is by Avoine et al. [1], which proposes a time-memory trade-off
to shorten the time it takes to find the tag. The trade-off works using Hellman’s
idea [35], later improved by Oechslin [50] that reduces the amount of work T needed
to invert any value in a set of N outputs of a one-way function given enough memory.
The trade-off can reduce the amount of work from N to N2/3 using N2/3 units of
memory. The authors find appropriate trade-offs and present multiple examples.
One such example uses 1GB of memory, and given m = 210 and n = 220, the time
to find the tag is approx 40’000× faster than without memory usage. Though this
improvement partially solves one of the principle problems of OSK, a tag can still
be made unreachable by the system by simply querying it m >> 210 times by a
malicious entity — a so-called denial of service (DoS) attack.

The YA-TRAP protocol, proposed by Tsudik [66] is another generation of hash-
based private identification schemes, which, as an added feature, also provides

22 2.2. PRIVACY-PRESERVING RFID IDENTIFICATION

CHAPTER 2. RFID SECURITY PROTOCOLS

Reader R Tag Ti

Database L: Shared secrets:
{. . . , (tj, HMACKi

(tj)),. . . } Ki, t0, ti, tmax

−→ tj
if (tj < ti) or (tj > tmax)

hj = PRNGj
i

else
hj = HMACKi

(tj) and
←− hj update ti ← tj

check ∃tj s.t. (tj, hj) ∈ L

Figure 2.2: The YA-TRAP protocol. On the top, the shared secrets are indicated.
The protocol starts with the reader interrogating the tag with current time tj, to
which the tag responds either PRNGj

i or HMACKi
(tj). The reader then checks using

its internal database L, whether the returned value is correct or not.

authentication. The YA-TRAP protocol is described in Fig. 2.2. The main idea
behind YA-TRAP is to store a timestamp on the tag that can only increase to a
given tmax time, and which is updated after every query by the reader. Essentially,
the reader sends a timestamp tj which must be larger than the current timestamp
in the tag ti, and the tag replies with the HMACKi

of the timestamp tj, and the
tag updates its timestamp to tj. The reader simply checks if the pair (timestamp,
HMAC) corresponds to a Ki in its database. This scheme is interesting, as it allows
for batch operation: if many tags need to be identified and authenticated, such as
envisioned by the EPC, e.g. when filling up the stock of a supermarket, the batch of
tags can be identified in O(n) operations. This batch-processing is done as follows:
the tags’ replies, the hj-s are collected in a hash table data structure, and when the
reader goes through each element in the database, it searches the hash table for
matches. Since it takes O(1) to search in a hash table, it takes O(n) to go through
all elements of the database, finding the match for every collected hj on the way.

The YA-TRAP scheme has multiple drawbacks. First of all, a denial-of-service
(DoS) attack is trivial to carry out, as it suffices to send a very high tj to the tag,
e.g. tmax − 1. Also, as shown by Ouafi et al. [53], the tag can be made traceable by
first making the tag think it is in the future then observing a validation check of
the tag by the reader, thus winning the Privacy Experiment of Juels and Weis [41].
Subsequently, YA-TRAP was revisited and updated by Burmester et al. into YA-
TRAP+ and O-TRAP [12], both of which have later been shown to be traceable by
Ouafi et al. [53].

RIPP-FS by Conti et al. [18] is another hash-based protocol, which distinguishes
itself by employing hash chains, originally proposed by Lamport in [44]. Each tag
Ti is initialised with a tag key K0

Tag, shared with the reader. The tag also stores

the initial pair (K0 , t0) generated by the reader, where K0 is the last value in the

2.2. PRIVACY-PRESERVING RFID IDENTIFICATION 23

CHAPTER 2. RFID SECURITY PROTOCOLS

tag-specific hash chain:

Kl = w

Ki = H(Ki+1) = H l−1(w), i = 0, . . . , l − 1

K0 = H l(w)

where w is the seed, and tj (j = 0, . . . , l) is a time interval counter. One of the goals
of RIPP-FS’s design was to achieve untraceability, and offer more security guarantees
than YA-TRAP and its variants. However, the untraceability properties of RIPP-FS
were broken by Ouafi et al. [53] in the Juels and Weis model, the Privacy Experiment.

Although hash-based protocols have very useful properties, they are still un-
practical for two reasons. Firstly, hash functions have been shown to be much
more resource-intensive to implement on RFID tags than previously thought [22].
Secondly, with hash-based protocols it is often the case that either the number of
queries allowed to the tag is limited by the protocol, or if the tag is queried too many
times, it can be lost from the system: in YA-TRAP and RIPP-FS if the time-stamp
given is too large the tag is rendered inoperative, while with OSK if the tag is queried
too many times, the resulting evolution of the tag’s internal state renders the tag
unidentifiable and thus dysfunctional.

2.2.4 Key-tree based protocols

Key-tree based protocols are a family of protocols based on the original protocol by
Molnar and Wagner [47]. In this protocol, each tag is a leaf of a balanced tree of
depth d, with a branching factor b, thus the total number of tags in the system is
bd. At every level, each branch of the tree has an associated key. The tags know
all keys on their paths from the root to the leaf. An example tree is shown in Fig.
2.3. When a tag wants to identify itself to the reader, it executes the protocol as
described in Fig. 2.4 at each level of the tree from the root to its corresponding leaf.

As there are only b branches of the tree at each level, the function f only needs
to be calculated on average b/2 times at each level, for a total of b · d/2 executions
of f on average. Since there are bd tags in the system, this is logarithmic in the
number of tags. The authors describe a trade-off between the branching factor and
the depth, which is further elaborated upon by Buttyan et al. [13], where the authors
calculate the depth and branching factor needed for different tag populations and
timing constraints.

The key-tree approach has several features that make it exceptional in many
respects. First of all, it is adaptable to any protocol: the PRF function simply needs
to be replaced by the protocol in question. Secondly, if the underlying protocol has
the appropriate security features (a feature that PRFs provide), it also provides
authentication of the tag. Finally, if the last step is carried out, the protocol provides
mutual authentication.

The drawback of using key-trees is that tags must share secrets. Since tags are
usually not in a controlled environment, and they are rarely tamper-resistant, the
risk of key compromise by malicious parties is not negligible. Once a tag is tampered
with and its stored keys are recovered, the adversary can use the keys to undermine

24 2.2. PRIVACY-PRESERVING RFID IDENTIFICATION

CHAPTER 2. RFID SECURITY PROTOCOLS

Root

Keys:{Ø}

Tags using k1

Keys:{k1}

Leaf

Keys:{k1, k1,1}

T1,1

Leaf

Keys:{k1, k1,2}

T1,2

Tags using k2

Keys:{k2}

Leaf

Keys:{k2, k2,1}

T2,1

Leaf

Keys:{k2, k2,2}

T2,2

Figure 2.3: An example Molnar-Wagner key-tree. The branching factor b is 2 and
the depth d is also 2, for a total of four tags in the system. The weakness of the
system is the following: by tampering with and compromising the keys stored in tag
T2,2, the privacy of tag T2,1 is compromised as there are no other tags on the branch
with key k2. Also, the remaining two tags’ anonymity set is halved, as the original
anonymity set was {T1,1, . . . , T2,2}, but only {T1,1, T1,2} remains — a drop from a set
of 4 to a set of 2.

Reader R Tag Ti

Generate nonce r1
−→ r1

Generate nonce r2 and
calculate
σ = ID ⊕ fk(0, r1, r2)

←− r2, σ
find (k, ID) ∈ L s.t.
ID = σ ⊕ fk(0, r1, r2)

optional — only for mutual authentication

calculate
τ = ID ⊕ fk(1, r1, r2)

−→ τ

check τ
?
= ID ⊕ fk(1, r1, r2)

Figure 2.4: The Molnar-Wagner protocol, as executed at each level of the tree,
starting from the root of the tree. L is the database of tags and their respective keys
for the current level, and f is a Pseudo-Random Function (PRF) implemented in all
tags and readers.

2.2. PRIVACY-PRESERVING RFID IDENTIFICATION 25

CHAPTER 2. RFID SECURITY PROTOCOLS

the privacy of other tags. For instance, if the branching factor was two, then by
recovering the keys in only one tag, the anonymity group of every tag in the system is
at least halved. The paper by Karsten and Evans [49] characterises this privacy loss
for key-trees with different parameters, and arrives at the conclusion that two-depth
trees are the most appropriate for many RFID scenarios.

2.2.5 Protocols based on experimental crypto-primitives

Complexity limits of RFIDs often require protocol designers to invent new primitives,
as standard primitives take up too many gate counts, or are unpractical for the
RFID setting. It often happens that these new crypto-primitives are found to have
weaknesses that were not anticipated by their designers. To overcome the newly
discovered shortcomings, the protocols are updated by their original designers or
others, and the challenge of finding weaknesses starts again. This cycle is often
repeated until the protocol is sufficiently robust to withstand serious attacks.

There are multiple examples in the literature where RFID protocols were designed,
published, shown to be weak against certain attacks, and then re-designed. One such
example is LMAP [55], shown to be susceptible to an active attack by Barasz et al. [3],
then re-designed as M2AP [56], and again shown to be weak against certain attacks
by Barasz et al. [4]. Another such protocol is ProbIP by Castelluccia and Soos [17],
present in Chapter 4, shown to be insecure by Ouafi et al. [53], and re-designed as
presented in Chapter 5.

The DPM protocol by Di Pietro and Molva [58] is also part of the family of
experimental protocols and it too has been shown to have some insecure features both
by Deursen et al. [67] and by Soos [65]. A complete description of the attack by Soos
is present in Chapter 3. Continuing the improvement cycle of (re-)design-and-attack,
the DPM protocol has been updated by its designers and others to the Ff family of
protocols [6].

Protocols that are widely different from the kind usually accepted by the crypto-
graphic establishment could bring a big leap forward. However, from the designer’s
perspective, a good cryptographic background is indispensable for the creation of
such protocols, otherwise well-established cryptographic techniques will be used with
high success rates. From the attacker’s perspective, flexibility is required to use such
cryptographic techniques in an unfamiliar environment.

2.3 RFID Authentication protocols

Authentication for RFIDs, though is a secondary objective, has received much
attention due to the many advantages it could bring. For instance, if RFIDs
could be equipped with authentication mechanism, they could be used for securing
building access, or for micropayment in public transport. If EPC tags could be
cheaply equipped with a means of authentication, they could be used to authenticate
warranty repairs, bringing paper-less warranties for customers and less fraudulent
repairs for shops.

We have identified five different types of authentication protocols for RFIDs. These
are: symmetric cipher-based protocols, protocols based on the Rabin cryptosystem,

26 2.3. RFID AUTHENTICATION PROTOCOLS

CHAPTER 2. RFID SECURITY PROTOCOLS

public-key protocols, PUF-based protocols, and LPN (Learning Parity with Noise)-
based protocols.

2.3.1 Symmetric cipher and hash-based protocols

Given a symmetric cipher with a low hardware footprint, it is relatively easy to
make a challenge-response authentication protocol. Therefore, there has been a large
research effort on implementing standard crypto-primitives on hardware-constrained
devices.

In the area of block ciphers, a well-known result is that by Feldhofer et al. [24],
implementing AES on 3500 gate equivalents. To reduce the hardware footprint
to such an extent, the authors use an 8-bit architecture, calculate the round-key
on-the-fly, and store the state only once (unlike FPGA-implementations). This
implementation of AES takes 1032 clock cycles to encrypt a cleartext, and 1165
clock cycles to decrypt a ciphertext. Another block-cipher implementation is that of
DES on 2300 gate equivalents by Poschmann et al. [59], which takes only 144 clock
cycles to encrypt a ciphertext, but cannot decrypt (which the authors argue is not
of primary importance).

Low hardware-footprint implementation of the SHA-1 hash function has also
been attempted. However, the RFID-optimised implementation by Feldhofer and
Wolkerstorfer [23] requires 10868 gate equivalents, much more than an RFID could
handle. In the same paper, the authors implement MD5 and other hash functions,
all of which require more than 8000 gate equivalents. From the paper it follows that
most of the implementation challenge consists of reducing the number of registers
needed and the number of flip-flops clocked. However, hash functions typically have
a message expansion phase which requires many registers to store the intermediate
values, and they usually also operate on multi-byte words, requiring many flip-flops
to be clocked at the same time. In contrast, AES has only a storage need of 256bits
and operates on single-byte words. Therefore, as Feldhofer et al. [22] have previously
pointed out, it is debatable whether currently used hash function designs such as
MD5 and SHA-1 are suitable for RFIDs at all.

Another way of solving the problem of hardware constraints is to tweak the
cipher itself instead of tweaking its implementation. For stream ciphers, the eStream
project’s low hardware footprint portfolio [2] is such an attempt. Two of its most well-
studied candidates, Trivium [14] and Grain [34] could be promising for applications in
RFIDs. Of the two, Trivium operates with a 287-bit state while Grain needs only 160
bits of state to operate. Though Grain uses more complex filter and feedback functions
than Trivium, it still seems a better candidate for RFIDs since its extra functional
complexity is more than overset by its much lower register usage, and consequently
its much smaller hardware footprint. Grain also needs far less initialisation steps:
it uses only 2 cot 80 = 160, clocking both of its registers fully twice, while Trivium
clocks its register set four times for 4 · 288 = 1152 initialisation steps in total. As
for bock ciphers specifically designed for hardware-constrained devices, DESL [59] is
variation of DES that uses a serialised S-box, thereby reducing the implementation
footprint to 1848 GEs from 2300 GEs for the DES implementation [59], but keeping
the same speed of operation. Finally, a block cipher designed specifically for RFIDs
is PRESENT by Bogdanov et al. [8]. It has a candidate implementation of only 1570

2.3. RFID AUTHENTICATION PROTOCOLS 27

CHAPTER 2. RFID SECURITY PROTOCOLS

gate equivalents that takes only 32 clock cycles to encrypt a cleartext and, similarly
to the DESL implementation, does not have decryption functionality.

2.3.2 Rabin cryptosystem-based protocols

The Rabin cryptosystem-based MAC for RFIDs was first introduced by Shamir [63].
This cryptosystem relies on a variation of the Rabin cryptosystem [60], but it
replaces the squaring of the plaintext with an addition of the random multiple of
the divisor to create a function, which is ideally suited to RFID-based challenge-
response authentication. This cryptosystem is used in SQUASH [64] by Shamir and
in WIPR [51] by Oren and Feldhofer.

SQUASH uses multiple techniques to reduce the size of the resulting RFID
implementation. For the modulus n it uses a composite Mersenne number of the
form n = 2k − 1 to reduce the storage cost. To reduce on-the-tag computation and
the communication overhead, the tag does not send the whole encrypted ciphertext:
a limited number of bits, say t suffice to make the scheme 2−t-secure. SQUASH
suggests to use a t-long window in the middle, but instead of computing all previous
bits, suggests to compute only u guard bits before this t-long window, further reducing
computational costs. After a detailed description of these techniques, the author
specifies SQUASH-128 as an example proposal. SQUASH-128 uses about half the
number of gates in GRAIN-128 [34] and claims a protection against an adversary
with less than 264 of time and space.

Although Rabin cryptosystem-based MACs rely on a proven cryptosystem for
security, its specific instantiations can be insecure. This happened with SQUASH-0,
the first iteration of SQUASH, presented by Shamir during an invited lecture to
RFIDSec 2007 [63]. SQUASH-0 has been shown to be susceptible to attack by Ouafi
and Vaudenay in [54].

2.3.3 Protocols based on public-key cryptography

Since public-key cryptography is very hardware-intensive to implement, the only
viable way it has been proposed to be implemented on RFID tags is by using a
token-based approach where pre-computed tokens, coupons are stored on the tag
and are used as an aid. The tag, when queried, uses up a coupon to authenticate
itself to the reader. The coupons are such that the tag only needs to do a limited
number of operations to use them.

The coupon-type scheme is implemented by McLoone and Robshaw [46] in their
RFID-optimised implementation of the already ISO-standardised (ISO/IEC FDIS
9798-5) GPS protocol [30]. McLoone and Robshaw propose to use an elliptic curve
variant of GPS due to Girault [31] and also require the reader to use Low Hamming
Weight challenges, an improvement by Girault and Lefranc [32], to reduce parameter
sizes. In their scheme, McLoone and Robshaw replace the modular exponentiation
with a coupon and a simple integer (non-modular) calculation. They propose multiple
implementations of their scheme, notably with and without a PRNG to help re-
generate the random number inside the coupon. The PRNG takes about 1000 gate
equivalents on the tag, but drastically reduces the coupon sizes. With the PRNG,
the implementation fits on no more than an estimated 1500 gate equivalents, and 10
such reduced-sized coupons take up approximately 500 GEs, for a total of 2000 GEs.

28 2.3. RFID AUTHENTICATION PROTOCOLS

CHAPTER 2. RFID SECURITY PROTOCOLS

The advantage of the coupon-type scheme in comparison with using one-time
passwords is that untrusted readers can authenticate the tag, as the knowledge
of the public key does not allow an untrusted reader to fake authentication. The
disadvantage of the coupon-type approach in comparison with other (shared-key)
cryptographic approaches is that the tag’s ability to authenticate can be easily
disabled by a malicious reader through the simple exhaustion of coupons — a
type of denial of service (DoS) attack. Coupons then need to be re-charged by a
non-malicious reader for the tag to be able to authenticate again.

2.3.4 HB+ and its variants

The HB+ protocol by Juels and Weis [40] was a great leap forward by the RFID
community towards low hardware footprint authentication protocols. The protocol
uses the idea by Hopper and Blum [36], which in turn uses the Learning Parity with
Noise (LPN) problem, also known as the minimal disagreement parity problem [19],
to base its security on. The LPN problem is known to be NP-hard [5], though finding
the solution to it has been consequently improved with ever newer algorithms. The
original BKW algorithm [7] was superseded by that of Fossorier et al. [25] and then
by that of Levieil and Fouque [69]. Using the newest algorithm, HB+’s claimed
280-security drops to around 252. On top of algorithmic advances on LPN, the
protocol itself has also been shown to be susceptible to an active attack by Gilbert
et al. [27].

To overcome both the active attack and the low parameter sizes offered by HB+,
many variants emerged. The literature counts HB++ [10], HB∗ [20], HB-MP [48]
and HB# [29], all but last of which was broken by Gilbert et al. [28]. HB+’s newest
iteration, HB# by Gilbert et al. is still resistant to attacks, though one of the research
paper’s proposed protocol variation and some of the parameter sizes have been shown
to be insecure by Ouafi et al. [52].

Most incarnations of the HB+-type protocols have been broken, which indicates
that making a correct variation is very difficult. Furthermore, advancements in solving
the LPN problem could prove fatal to not only to a specific iteration, but also to the
whole concept. The parameter needs increase for every new LPN-solving algorithm
and every attack method, thereby increasing the computation, communication, and
storage needs of tags implementing HB-based protocols. This continuous increase
could eventually make the concept so resource-intensive to implement that other
protocol families would become more suitable.

2.3.5 Physically Uncloneable Functions

A Physically Uncloneable Function (PUF) is a function that depends on the differences
introduced during manufacture to map inputs to outputs. Therefore, for the same
input, different physical incarnations of the same circuit yield different outputs. For
electronic circuits, the differences exploited are the wire and gate-delays which are
difficult to predict, measure and, most importantly, to accurately model [45]. Since
the wire gate-delays cannot be modelled, the circuit cannot be reproduced with
accuracy and so the outputs of the circuit for untested inputs cannot be predicted.
Therefore, by using a suitable function to eliminate the differences introduced by

2.3. RFID AUTHENTICATION PROTOCOLS 29

CHAPTER 2. RFID SECURITY PROTOCOLS

environmental (temperature, pressure, etc.) variations, the output of the PUF can
be used as a means to uniquely identify an electronic circuit.

PUFs were originally invented for optical media by Ravinkanth [61], but later
they were ported to silicon by Gassend et al. [26]. They have been proposed to
be used in RFIDs by Bolotnyy and Gabriel [9] as a means to authenticate the tag.
The protocol proposed the following: the tag is queried at manufacture for random
inputs, the obtained (input,output) pairs are stored, and later used to authenticate
the tag. Since the attacker can neither build a sufficiently large (input, output)
database due to the bitsize of the input, nor can she model the PUF inside the tag
given a number of (input, output) pairs, PUFs seem to be ideal to authenticate a
tag. Although PUFs also promise the low hardware need of only a couple of hundred
gate equivalents, we know of no real-world implementation of them on RFIDs, which
undermines their verifiability.

2.4 Protocol properties overview

In this section we provide a list of the previously mentioned protocols and their
offered features in a matrix-like fashion.

The matrix of features provided by the previously mentioned protocols is in Table
2.1. Most of the protocols in the table have a star next to their security features,
meaning that their offered security feature(s) have been shown to be broken. This is
expected in the field of computer security, as given enough time, most cryptographic
and security protocols are found to have weaknesses: attacks continually get better,
they never get worse. It is interesting to see that almost all RFID security protocols
that relied on a new primitive, such as ProbIP, SQUASH-0, DPM, etc. have had
at least some of their offered security features broken. It is also evident from the
feature-matrix that the protocol that offers the most features and has stood the test
of time is the Molnar-Wagner key-tree protocol.

2.5 Conclusions

From our recap of the most influential RFID protocols and their derivatives, it is
apparent that RFID protocols follow the pattern prevalent in the more general field
of computer security: protocols are conceived, refined, attacked, only to be re-born
again with improved design to counter the newly found security vulnerabilities. This
never-ending cycle of refinement brings to light the fundamental advantages and
limits of RFIDs. Based on this refined view of RFID systems, new protocols are
conceived that fit the domain ever more perfectly.

There are many different goals in RFID systems: identification speed, authentica-
tion, privacy, system-wide resistance to attacks, tag cheapness, etc. Some protocols
try to achieve all of these, some only a particular subset. Some of these goals have
even been shown to be conflicting: Burmester et al. have shown [11] that less than
linear-time (in the number of tags) private identification is not possible without
either shared secrets (possibly compromising system-wide resistance) or public-key
cryptography (possibly compromising tag cheapness). Even if some protocols will
prove to be more useful than others over the course of time, there surely will remain

30 2.4. PROTOCOL PROPERTIES OVERVIEW

CHAPTER 2. RFID SECURITY PROTOCOLS

Table 2.1: Overview of the previously mentioned RFID protocols’ claimed offered
features. Features that have been shown to be broken are clearly marked with a star.
Note that HB# can be made resilient to attacks using higher parameters.

Protocol Unlinkable Untraceable Tag Reader
ident. ident. auth. auth.

ISO14443A coll.- No No No No
avoidance [37]

EPC coll.- No No No No
avoidance [21]

Pseudonym- Yes∗ Yes∗ No No
rotation [38]

ProbIP [17] Yes∗ Yes∗ No No
OSK [43] Yes∗ Yes∗ Yes No
YA-TRAP [66] Yes∗ Yes∗ Yes No
YA-TRAP+ [12] Yes∗ Yes∗ Yes No
O-TRAP [12] Yes∗ Yes∗ Yes No
RIPP-FS [18] Yes∗ Yes∗ Yes Yes
Molnar- Yes Yes Yes Yes
Wagner [47]

DPM [58] Yes∗ Yes∗ Yes Yes
SQUASH-0 [63] No No Yes∗ No
SQUASH-128 [64] No No Yes No
WIPR [51] No No Yes No
HB+ [40] No No Yes No
HB# [29] No No Yes No
PUF [9] No No Yes No

many to be made use of, due to the different trade-offs for the different RFID settings.

2.5. CONCLUSIONS 31

CHAPTER 2. RFID SECURITY PROTOCOLS

32 2.5. CONCLUSIONS

Bibliography

[1] Avoine, G., and Oechslin, P. A Scalable and Provably Secure Hash-
Based RFID Protocol. In The 2nd IEEE International Workshop on Pervasive
Computing and Communication Security - PerSec 2005 (2005), pp. 110–114.

[2] Babbage, S., Canniere, C. D., Canteaut, A., Cid, C., Gilbert, H.,
Johansson, T., Paar, C., Parker, M., Preneel, B., Rijmen, V.,
Robshaw, M., and Wu, H. The eSTREAM portfolio. Tech. rep., eStream
Project, September 2008.

[3] Bárasz, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. Breaking
LMAP. In Conference on RFID Security — RFIDSec’07 (Malaga, Spain, July
2007), pp. 69–78.

[4] Bárász, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. A. Passive
attack against the M2AP mutual authentication protocol for RFID tags. In
RFID 2007 — The First International EURASIP Workshop on RFID Technology
(September 2007).

[5] Berlekamp, E., McEliece, R., and van Tilborg, H. On the inherent
intractability of certain coding problems (corresp.). Information Theory, IEEE
Transactions on 24, 3 (May 1978), 384–386.

[6] Blass, E.-O., Kurmus, A., Molva, R., Noubir, G., and Shikfa, A. The
Ff-Family of Protocols for RFID-Privacy and Authentication. In Workshop on
RFID Security — RFIDSec’09 (Leuven, Belgium, July 2009).

[7] Blum, A., Kalai, A., and Wasserman, H. Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519.

[8] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann,
A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C. PRESENT: An
ultra-lightweight block cipher. In Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2007 (Vienna, Austria, September 2007), P. Paillier
and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 450–466.

[9] Bolotnyy, L., and Robins, G. Physically unclonable function-based security
and privacy in RFID systems. In PerCom 2007 (March 2007), IEEE, pp. 211–
220.

33

BIBLIOGRAPHY

[10] Bringer, J., Chabanne, H., and Dottax, E. HB++: a lightweight
authentication protocol secure against some attacks. In Security, Privacy and
Trust in Pervasive and Ubiquitous Computing, 2006 — SecPerU 2006 (June
2006), pp. 28–33.

[11] Burmester, M., de Medeiros, B., and Motta, R. Robust, anonymous
RFID authentication with constant key-lookup. In ASIACCS (2008), M. Abe
and V. D. Gligor, Eds., ACM, pp. 283–291.

[12] Burmester, M., Le, T. v., and Medeiros, B. d. Provably secure ubiquitous
systems: Universally composable RFID authentication protocols. In Conference
on Security and Privacy for Emerging Areas in Communication Networks —
SecureComm ’06 (Baltimore, Maryland, USA, August-September 2006), IEEE.

[13] Buttyán, L., Holczer, T., and Vajda, I. Optimal key-trees for tree-based
private authentication. In Workshop on Privacy Enhancing Technologies —
PET 2006 (Cambridge, United Kingdom, June 2007), pp. 332–350.

[14] Cannière, C. D. Trivium: A stream cipher construction inspired by block
cipher design principles. In ISC (2006), S. K. Katsikas and et al, Eds., vol. 4176
of LNCS, Springer, pp. 171–186.

[15] CASPIAN - Consumers Against Supermarket Privacy Invasion and
Numbering. Boycott Benetton. Press release, March 2003. http://www.

boycottbenetton.com.

[16] Castelluccia, C., and Avoine, G. Noisy tags: A pretty good key exchange
protocol for RFID tags. In CARDIS (2006), J. Domingo-Ferrer, J. Posegga, and
D. Schreckling, Eds., vol. 3928 of Lecture Notes in Computer Science, Springer,
pp. 289–299.

[17] Castelluccia, C., and Soos, M. Secret shuffling: A novel approach to
RFID private identification. In RFIDSec’07 (July 2007), pp. 169–180.

[18] Conti, M., Pietro, R. D., Mancini, L. V., and Spognardi, A. RIPP-FS:
an RFID identification, privacy preserving protocol with forward secrecy. In
International Workshop on Pervasive Computing and Communication Security

— PerSec ’07 (New York City, New York, USA, March 2007), IEEE, IEEE
Computer Society Press, pp. 229–234.

[19] Crawford, J. M., Kearns, M. J., and Shapire, R. E. The minimal
disagreement parity problem as a hard satisfiability problem. Tech. rep., Com-
putational Intelligence Research Laboratory and AT&T Bell Labs, February
1994.

[20] Duc, D., and Kim, K. Securing HB+ against GRS man-in-the-middle attack.
Institute of Electronics, Information and Communication Engineers, Symposium
on Cryptography and Information, Security (2007).

[21] EPCglobal. 13.56 MHz ISM band class 1 radio frequency identification tag
interface specification (2003). Tech. rep., Auto-ID cetner, MIT, February 2003.

34 BIBLIOGRAPHY

http://www.boycottbenetton.com
http://www.boycottbenetton.com

BIBLIOGRAPHY

[22] Feldhofer, M., and Rechberger, C. A case against currently used hash
functions in RFID protocols. In OTM Workshops (1) (2006), R. Meersman,
Z. Tari, and P. Herrero, Eds., vol. 4277 of Lecture Notes in Computer Science,
Springer, pp. 372–381.

[23] Feldhofer, M., and Wolkerstorfer, J. Strong crypto for RFID tags -
a comparison of low-power hardware implementations. Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on (May 2007), 1839–1842.

[24] Feldhofer, M., Wolkerstorfer, J., and Rijmen, V. AES implementa-
tion on a grain of sand. In Information Security (2005), IEEE, pp. 13–20.

[25] Fossorier, M. P. C., Mihaljević, M. J., Imai, H., Cui, Y., and Mat-
suura, K. A novel algorithm for solving the LPN problem and its applicatio
to security evaluation of the HB protocol for RFID authentication. In IN-
DOCRYPT (2006), R. Barua and T. Lange, Eds., vol. 4329 of Lecture Notes in
Computer Science, Springer, pp. 48–62.

[26] Gassend, B., Clarke, D., van Dijk, M., and Devadas, S. Controlled
physical random functions. In Proceedings of the 18th Annual Computer Security
Applications Conference — ACSAC ’02 (2002), IEEE.

[27] Gilbert, H., Robshaw, M., and Sibert, H. An active attack against HB+ -
a provably secure lightweight authentication protocol. In IEE Electronic Letters
41, 21 (2005), pp. 1169–1170.

[28] Gilbert, H., Robshaw, M. J., and Seurin, Y. Good variants of HB+ are
hard to find. In Financial Cryptography (January 2008), Springer.

[29] Gilbert, H., Robshaw, M. J. B., and Seurin, Y. HB#: Increasing the
security and efficiency of HB+. In Advances in Cryptology — EUROCRYPT
’08 (2008), N. P. Smart, Ed., vol. 4965 of Lecture Notes in Computer Science,
Springer, pp. 361–378.

[30] Girault, M. Self-certified public keys. In Advances in Cryptology — EURO-
CRYPT ’91 (1991), pp. 490–497.

[31] Girault, M. Low-size coupons for low-cost IC cards. In CARDIS (2000),
J. Domingo-Ferrer, D. Chan, and A. Watson, Eds., vol. 180 of IFIP Conference
Proceedings, Kluwer, pp. 39–50.

[32] Girault, M., and Lefranc, D. Public key authentication with one (online)
single addition. In Cryptographic Hardware and Embedded Systems - CHES
2004 (2004), vol. 3156/2004 of Lecture Notes in Computer Science, pp. 967–984.

[33] Hancke, G. Modulating a noisy carrier signal for eavesdropping-resistant HF
RFID. e&i — Elektrotechnik und Informationstechnik 124, 11 (November 2007),
404–408.

[34] Hell, M., Johansson, T., and Meier, W. Grain — a stream cipher
for constrained environments. In Proceeding of the Workshop on RFID and
Lightweight Crypto (July 2005), pp. 114–125.

BIBLIOGRAPHY 35

BIBLIOGRAPHY

[35] Hellman, M. E. A cryptanalytic time-memory trade off. In IEEE Transactions
on Information Theory (1980), vol. IT-26/4, pp. 401–406.

[36] Hopper, N. J., and Blum, M. Secure human identification protocols. In
ASIACRYPT ’01: Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security (London, UK, 2001),
Springer-Verlag, pp. 52–66.

[37] ISO/IEC. 14443-3 — Identification cards – Contactless integrated circuit(s)
cards – Proximity cards – Part 3: Initialization and anticollision, 2001, Stage:
90.92 — 2007-12-11.

[38] Juels, A. Minimalist cryptography for low-cost RFID tags. In International
Conference on Security in Communication Networks — SCN 2004 (Amalfi,
Italia, September 2004), C. Blundo and S. Cimato, Eds., vol. 3352 of LNCS,
Springer-Verlag, pp. 149–164.

[39] Juels, A., Rivest, R., and Szydlo, M. The blocker tag: Selective blocking
of RFID tags for consumer privacy. In ACM CCS 2003 (October 2003), V. Atluri,
Ed., ACM Press, pp. 103–111.

[40] Juels, A., and Weis, S. Authenticating pervasive devices with human
protocols. In Advances in Cryptology — CRYPTO’05 (Santa Barbara, California,
USA, August 2005), V. Shoup, Ed., vol. 3126 of LNCS, IACR, Springer-Verlag,
pp. 293–308.

[41] Juels, A., and Weis, S. Defining Strong Privacy for RFID. In International
Conference on Pervasive Computing and Communications — PerCom 2007
(New York City, New York, USA, March 2007), IEEE, IEEE Computer Society
Press, pp. 342–347.

[42] Kirschenbaum, I., and Wool, A. How to build a low-cost, extended-range
RFID skimmer. In USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium (Berkeley, CA, USA, 2006), USENIX Association.

[43] Koutarou, M. O., Suzuki, K., and Kinoshita, S. Cryptographic approach
to ”privacy-friendly” tags. In RFID Privacy Workshop (MIT, Massachusetts,
USA, November 2003).

[44] Lamport, L. Password authentication with insecure communication. Commun.
ACM 24, 11 (1981), 770–772.

[45] Lim, D., Lee, J. W., Gassend, B., Suh, G. E., van Dijk, M., and
Devadas, S. Extracting secret keys from integrated circuits. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (2005), 1200–1205.

[46] McLoone, M., and Robshaw, M. J. B. Public key cryptography and RFID
tags. In CT-RSA (2007), M. Abe, Ed., vol. 4377 of Lecture Notes in Computer
Science, Springer, pp. 372–384.

36 BIBLIOGRAPHY

BIBLIOGRAPHY

[47] Molnar, D., and Wagner, D. Privacy and security in library RFID:
issues, practices, and architectures. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security (New York, NY, USA,
2004), ACM Press, pp. 210–219.

[48] Munilla, J., and Peinado, A. HB-MP: A further step in the hb-family of
lightweight authentication protocols. Comput. Netw. 51, 9 (2007), 2262–2267.

[49] Nohl, K., and Evans, D. Hiding in Groups: On the Expressiveness of Privacy
Distributions. In Proceedings of The Ifip Tc 11 23rd International Information
Security Conference — SEC 2008 (Milan, Italia, September 2008), vol. 278 of
Lecture Notes in Computer Science, Springer, pp. 1–15.

[50] Oechslin, P. Making a faster cryptanalytic time-memory trade-off. In Advances
in Cryptology — CRYPTO 2003 (2003), vol. 2729 of Lecture Notes in Computer
Science, Springer, pp. 617–630.

[51] Oren, Y., and Feldhofer, M. WIPR — a public key implementation on
two grains of sand. In Workshop on RFID Security 2008 (2008), S. Dominikus,
Ed., pp. 15 – 27.

[52] Ouafi, K., Overbeck, R., and Vaudenay, S. On the security of HB#
against a man-in-the-middle attack. In Advances in Cryptology — Asiacrypt
2008 (Melbourne, Australia, December 2008), vol. 5350 of Lecture Notes in
Computer Science, Springer, pp. 108–124.

[53] Ouafi, K., and Phan, R. C.-W. Privacy of Recent RFID Authentication
Protocols. In Information Security Practice and Experience, 4th International
Conference, ISPEC 2008 (Berlin, 2008), Lecture Notes in Computer Science,
Springer, pp. 263–277.

[54] Ouafi, K., and Vaudenay, S. Smashing SQUASH-0. In EUROCRYPT
(2009), A. Joux, Ed., vol. 5479 of Lecture Notes in Computer Science, Springer.

[55] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J.,
and Ribagorda, A. LMAP: A real lightweight mutual authentication protocol
for low-cost RFID tags. In Proceedings of RFIDSec’06 (Graz, Austria, July
2006), Ecrypt.

[56] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J.,
and Ribagorda, A. M2AP: A minimalist mutual-authentication protocol for
low-cost RFID tags. In International Conference on Ubiquitous Intelligence and
Computing — UIC’06 (September 2006), vol. 4159 of LNCS, Springer-Verlag,
pp. 912–923.

[57] Pfitzmann, A., and Köhntopp, M. Anonymity, unobservability, and
pseudonymity — A proposal for terminology. In Designing Privacy Enhancing
Technologies (2001), vol. 2009 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 1–9.

BIBLIOGRAPHY 37

BIBLIOGRAPHY

[58] Pietro, R. D., and Molva, R. Information confinement, privacy, and
security in RFID systems. In Proceedings of the 12th European Symposium On
Research In Computer Security (September 2007), pp. 187–202.

[59] Poschmann, A., Le, G., Schramm, K., and Paar, C. A family of light-
weight block ciphers based on DES suited for RFID applications. In Proceedings
of FSE 2007, LNCS (2006), Springer-Verlag.

[60] Rabin, M. O. Digitalized signatures and public-key functions as intractable
as factorization. Tech. rep., Massachusetts Institute of Technology, Cambridge,
MA, USA, 1979.

[61] Ravinkanth, P. Physical one-way functions. Tech. rep., MIT, 2001. Ph.D.
Thesis.

[62] Savry, O., Pebay-Peyroula, F., Dehmas, F., Robert, G., and
Reverdy, J. RFID noisy reader — How to prevent from eavesdropping
on the communication? In CHES (2007), P. Paillier and I. Verbauwhede, Eds.,
vol. 4727 of Lecture Notes in Computer Science, Springer, pp. 334–345.

[63] Shamir, A. SQUASH: A new one-way hash function with provable security
properties for higley contrained devices such as RFID tags. In Invited lecture to
the RFID Securty 2007 Workshop (2007).

[64] Shamir, A. SQUASH — a new MAC with provable security properties for
highly constrained devices such as RFID tags. In FSE (2008), K. Nyberg, Ed.,
vol. 5086 of Lecture Notes in Computer Science, Springer, pp. 144–157.

[65] Soos, M. Analysing the Molva and Di Pietro Private RFID Authentication
Scheme. In Workshop on RFID Security — RFIDSec’08 (Budapest, Hungary,
July 2008).

[66] Tsudik, G. YA-TRAP: Yet another trivial RFID authentication protocol.
In International Conference on Pervasive Computing and Communications —
PerCom 2006 (Pisa, Italy, March 2006), IEEE, IEEE Computer Society Press,
pp. 640–643.

[67] van Deursen, T., Mauw, S., and Radomirovic, S. Untraceability of RFID
protocols. In WISTP (2008), J. A. Onieva, D. Sauveron, S. Chaumette, D. Goll-
mann, and C. Markantonakis, Eds., vol. 5019 of Lecture Notes in Computer
Science, Springer, pp. 1–15.

[68] Vaudenay, S. On privacy models for RFID. In Advances in Cryptology —
Asiacrypt 2007 (Kuching, Malaysia, December 2007), vol. 4833 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 68–87.

[69] Éric Levieil, and Fouque, P.-A. An improved LPN algorithm. In Security
and Cryptography for Networks — SCN (2006), R. D. Prisco and M. Yung, Eds.,
vol. 4116 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 348–359.

38 BIBLIOGRAPHY

Part II

On the difficulty of designing
ad-hoc RFID security protocols

39

In this part of the thesis we elaborate on the difficulties arising when designing
ad-hoc RFID security protocols. Ad-hoc or in other words experimental protocols
(see Sect. 2.2.5) rely on an innovative approach to replace a function that is normally
provided by a standard cryptographic algorithm. In this class of protocols is for
instance LMAP by Peris et al. [20] and the protocol by Di Pietro and Molva [22].
Since these non-cryptographic protocols are highly innovative, the cryptanalysis/re-
design cycle that has refined standard techniques do not apply, and so these protocols
are often found to have failures, which are then corrected and the analysis/re-design
cycle starts again. This happened with LMAP [1] which has been redesigned as
M2AP [21] which again was cryptanalysed by Barasz et al. [2]. For these reasons,
ad-hoc protocols are notoriously difficult to design such that their security stands
the test of time.

Organisation

This second part of the thesis is made up of three chapters. In Chapter 3 we present
the Di Pietro-Molva protocol and describe its analysis to uncover some shortcomings
of the protocol. In Chapter 4 we present the Probabilistic Identification Protocol
(ProbIP), and describe the published attack against it, which breaks its security.
Finally, in Chapter 5 we present the updated version of ProbIP, EProbIP, which
significantly improves on the security of the original scheme.

41

42

Chapter 3

Analysing the Molva and Di
Pietro Private RFID
Authentication Scheme

In this chapter we examine a protocol by Refik Molva and Roberto Di Pietro [22]
that tries to solve the authentication and privacy problems of RFIDs with novel
design ideas. This protocol is part of a class of protocols we call experimental (see
Sect. 2.2.5), that is, it relies on an innovative approach to replace a function that
is normally provided by a standard cryptographic algorithm. The Di Pietro-Molva
protocol uses this non-standard algorithm to achieve private identification. To achieve
authentication, the protocol uses a standard hash function.

Organisation

In Sect. 3.1 we present the Di Pietro-Molva protocol and in Sect. 3.2 we analyse
one of its function’s unintended behaviour. In Sect. 3.3 we analyse the private
identification part of the protocol, then in Sect. 3.4 we show a practical active
attack against it, requiring only a few identification attempts to break privacy, and
additionally 2K/3 operations to break authentication. Finally, in Sect. 3.5 we present
a list of found design flaws and their remedies and in Sect. 3.6 we draw some
conclusions.

3.1 A short summary of the Molva - Di Pietro

scheme

The scheme of Molva and Di Pietro [22] aims to be a private RFID mutual authenti-
cation scheme. As such it aims to solve three problems at the same time for RFID
tags: it privately indicates the tag ID to the reader, it authenticates the tag to the
reader and authenticates the reader to the tag. For clarity of explanation, we make
a clear distinction between these three parts throughout this analysis.

There are n tags Ti in the system, each of which is configured with a unique key
ki which serves as the tag ID and the key at the same time. This key is used as a
bitvector with ki[x] representing the xth bit of ki. Each reader also has a unique IDj .
At system initialisation, each reader Rj is configured with the reader-specific key of

43

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

each tag, ki,j = h(ki||IDj||ki), where h(·) is a secure hash function available both on
the tag and the reader.

3.1.1 Private identification

For private identification the protocol relies on the function DPM . The input to
DPM is l bits where l is divisible by 3, and the output is one bit. DPM is defined
as:

DPM(x) =
l/3⊕
i=0

M(x[3i], x[3i+ 1], x[3i+ 2]) (3.1)

where M is the majority function: its input is 3 bits, and its output is one bit. M
decides whether there are more 1-s in its input is than 0-s and returns the value 1 or
0 accordingly.

The private identification part of the protocol is as follows:

1. Rj sends IDj to the tag

2. Ti computes ki,j = h(ki||IDj||ki). It then generates q l-bit random nonces, rp

(p = 1 . . . q). It then sends q αp-s where αp = rp⊕ ki,j and it sends a q-bit long
vector V that is set up as V [p] = DPM(rp) to the reader

3. Rj computes DPM(αp⊕ ki,j) for all keys ki,j it possesses and checks it against
V [p]. This is called the Lookup Process. The key ki,j that fits on all pairs
(αp, V [p]), p = 1 . . . q is the tag suspected of sending the packets

At the end of the identification part, the reader suspects which tag it is talking
to. The authors explain in detail how large q (the number of pairs sent) should
be so that with very high probability only the correct key will fit on all pairs
(αp, V [p]), p = 1 . . . n.

The choice of parameters by the authors is not explicitly stated in the paper, but
we can assume that an 80-bit security was meant, as the authors use a 160-bit hash
function for h. The parameter sizes are then |ki| = 81, |IDj| = 80 and l = 81 where
|x| means the bitlength of x. The parameter q is only defined as being large enough
so that the probability of a false positive, calculated by the authors as n(1/2)q (where
n is the number of tags in the system) should be very low.

3.1.2 Tag authentication

During tag authentication the reader would like to make sure that it is indeed talking
to tag Ti. This is important since a malicious tag could simply replay an instance
of the private identification part of the protocol to the same reader and the reader
would not be able to differentiate between the two tags.

The tag authentication part of the protocol is as follows:

1. Rj sends a nonce nj to the tag

2. Ti computes and sends ω = h(ki,j||nj||r1||ki,j) to the reader

3. Rj computes r1 = α1 ⊕ ki,j and checks ω against h(ki,j||nj||r1||ki,j). If they
match, the tag is authenticated

44 3.1. A SHORT SUMMARY OF THE MOLVA - DI PIETRO SCHEME

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

3.1.3 Reader authentication

After tag authentication the reader authenticates itself to the tag:

1. Rj computes r1 = α1 ⊕ ki,j and sends h(ki,j||r1||ki,j) to the tag

2. Ti computes h(ki,j||r1||ki,j) and checks it against the received hash. If they
match, the reader is authenticated

3.2 The DPM function

The DPM function is such that if an even number of majority functions’ outputs
are flipped, the output is not flipped. This property of the DPM function has two
unfortunate consequences: key- and pair-equivalences, which we detail in this section.

3.2.1 Key equivalences

Let us divide the key ki,j into blocks of 3 bits, which we simply call key blocks. If
an even number of key blocks are inverted, the resulting key is indistinguishable
by the reader from the original key using only the (αp, V [p]) pairs. This is because
V [p] = DPM(αp ⊕ ki,j) = DPM(αp ⊕ ki,j⊕inversions) and so the result of the
Lookup Process will not depend on whether the blocks were inverted or not. One
such pair of key-equivalents is ki,j =[001 000 100]≈[110 000 011].

Key equivalences mean that any key of size l belongs to a key-equivalence group of
size

∑b(l/3)/2c
i=0

(
l/3
2i

)
= 2l/3−1, i.e. in a keyspace of 2l there are 2l−l/3+1 key-equivalence

groups (or key-eqgroups for short). Keys in a key-eqgroup are equivalent if the reader
only looks at the (αp, V [p]) pairs. Naturally, if the reader checks ω, each of these tags
is distinguishable from one another. However, as key sizes of at least 80 bits must be
used to thwart brute-forcing of keys, the number of possibilities that could be left
after the pairs are processed is 281/3−1 ≈ 7 million, which is impossible for the reader
to check, since executing a hash function this many times is too time-consuming for
a quick identification session.

Under normal conditions, the keyspace (2l) is extremely sparsely populated —
there may be less tags in the whole system than the size of one such key-eqgroup.
However, care must be taken to have a very low ratio of n : 22l/3+1, otherwise the
hash h(ki||IDj||ki) could produce many keys that are in the same key-eqgroup for a
certain reader (i.e. for a certain IDj). This can be a problem, as there might be a
time-limit for the reader to find which tag it is talking to within the key-eqgroup.
We can calculate the chance that for a random reader IDj there is at least one
key-eqgroup with more than one tag inside as 1− (1− n/22l/3+1)n−1. For example,
for n = 107, l = 81, this probability is 0.003, which means that if there are 1000
readers deployed, then there is a 1− (1− 0.003)1000 ≈ 95% chance that at least one
reader has at least one key-eqgroup with more than one tag inside.

Key-eqgroups also mean that the attacker’s keyspace is limited to 2l−l/3+1 if the
attacker is only interested in the key-eqgroup the tag belongs to. If the attacker
is interested in the exact tag, she can try to do 2l/3−1 hash operations to find ki,j

using n, r1 and ω of a session. This is feasible even for l = 99 and h =SHA-1: the
key-eqgroup would be 2l/3−1 = 232 ≈ 4 billion large and a Xeon quad-core can do

3.2. THE DPM FUNCTION 45

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

about 4 million SHA-1 operations per second, so in less than half an hour would find
the key ki,j. Let us note that the hash function on the tag would be more simple
than SHA-1 due to hardware constraints, and would be much easier to brute-force.

3.2.2 Pair-equivalences

The design of theDPM function also implies (αp, V [p]) pair-equivalences: for multiple
different pairs the same keys are found not to fit (i.e. pruned) during the Lookup
Process.

If V [p] = DPM(αp ⊕ ki,j) then for any α′p that has an even number of blocks
inverted, V [p] = DPM(α′p ⊕ ki,j) will also hold. Therefore the Lookup Process will
prune the same keys for these pairs. For example [010 001]-0≈[101 110]-0

If an odd number of blocks are inverted in αp then an odd number of blocks in r
must have been inverted, so V ′[p] = DPM(r′) = V [p]. Therefore, the Lookup Process
will prune the same keys for these pairs as well. For example [100 000]-1≈[011
000]-0.

The property of pair-equivalences implies that the Lookup Process is not running
at maximum efficiency since the possibility that two equivalent r-s are produced by
the tag during identification is higher than with a DPM function that does not have
this property.

3.2.3 The effect of equivalences

It is important to note that during the Lookup Process both pair- and key-equivalences
are acting in tandem, and have two different effects: the first slows down the pruning
of the keyspace (ki,j-s stored in the reader), and the second does not let the pruning
go beyond a certain point.

3.3 Private identification

In this section we examine the identification part of the protocol from multiple
angles. First, we examine the Lemmas it depends on, then investigate the number of
(αp, V [p]) pairs needed for its proper working, and finally we make some practical
observations regarding its bandwidth need.

3.3.1 Observations about Lemma 2

In the original paper, Lemma 3 states that for a randomly chosen r, the chance
that DPM(r) = 1 is 0.5, and the chance that DPM(r) = 0 is also 0.5. This means
that given a set of tags and their unique random keys, a randomly chosen (αp, V [p])
pair will on average fit on half of the keys. Using this lemma, the authors conclude
in Lemma 2 that given q randomly chosen pairs, the probability that at least one
key will survive out of n random keys is less than n(1/2)q. For this to hold, the
distribution of surviving keys should have been random after one pair. However, the
distribution of the surviving keys is not random: for example, two identical pairs
prune the keyspace only once.

46 3.3. PRIVATE IDENTIFICATION

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

3.3.2 The true number of (αp, V [p]) pairs needed

We will calculate δq, the additional number of (αp, V [p]) pairs needed for the reader
to identify a key-eqgroup with a probability of at least 99% given that there are
n′(≤ n) key-eqgroups among the tags in the system.

Since the distribution of key-eqgroups is not random after one or more (αp, V [p])
pairs, we need to investigate whether we need to compensate for this with extra
pairs. For the moment, let us use Lemma 2 to calculate an estimate of the number
of pairs needed. The conclusion of Lemma 2 is that for an incorrect identification
probability ε ≤ 2−r, the number of pairs sent, q, must be at least r + log(n′) i. As
an example, for the parameters n′ = 106 and ε ≤ 0.01, q must be at least 27. We
will now investigate how large δq, the additional number of pairs needed should be
to compensate for the fallacy of Lemma 2.

Redundant pairs

We call redundant pairs a set of (αp, V [p]) pairs that are not equal in the sense of
pair-equivalences, but as a set form a tautology: removing one or more pairs from the
set will not reduce the information content of the set. One such set is for instance:

αp V [p]

011 100 0

011 111 1

010 100 0

010 111 1

In this set, given any 3 of the 4 pairs the 4th pair can be deduced. In other words,
the information content of these 4 pairs is only 3 pairs. Theoretically determining
the occurrence probabilities of redundant pairs is out of the scope of this analysis.
Instead, we ran some tests to observe what is the practical occurrence ratio of
them for different keysizes and different number of non-equivalent pairs. For the
experiment, the number of tags in the system (n) is irrelevant, the rp-s were generated
using a PRNG with uniform output, and the tag- and reader-specific key ki,j was
also randomly drawn. The results of this experiment are present in Fig. 3.1.

Using a logarithmic (ln) scale for the axis z, the equation 9.62l − 16.11q + 24z +
42.18 = 0 describes the plane. Substituting q = 27 and l = 81 into this equation
yields z = −16.1, i.e. the occurrence rate for these parameters is e−16.1 ≈ 10−7. This
is so small that it does not need to be compensated with δq. However, for larger tag
populations, the occurrence rate can be very high. For example, for 109 tags and
consequently q = 40 the occurrence rate jumps to 10−4, which cannot be ignored
and must be compensated with a δq strictly larger than zero.

Pair-equivalents during identification

The chance that among q random (αp, V [p]) pairs there will be at least one that is
a pair-equivalent is as follows. There are 22l/3 pair-eqgroups, so the chance that at

iThe authors meant log to be log2

3.3. PRIVATE IDENTIFICATION 47

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

6
8

10
12

14
16

18
20 22 2

4
6

8
10

12
14

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Keysize (l)
Number of
pairs (q)

Avg. no. of
redundant
pairs (z)

Figure 3.1: Average number of redundant pairs within q non-equivalent pairs for
different keysizes. As the number of pairs increases, the occurrence rate of redundant
pairs increases at an exponential rate

least two pairs will be from the same pair-eqgroup among q pairs is

Prepeat ≤
(
q

2

)
2−2l/3 (3.2)

For l = 81, n = 106, ε ≤ 0.01 and q = 27, Prepeat ≤
(

27
2

)
2−54 ≈ 2 · 10−12. This

probability is so small, that practically it never occurs and so it does not need to be
compensated for with additional pairs.

3.3.3 The bandwidth needed in a common setup

Let us measure the total bandwidth cost of the protocol: for an even 80-bit security
goal as mentioned in Sect. 3.1.1, the protocol uses q · 81 bits for the αp-s, q bits for
V , and 80 + 160 + 160 bits for the two-way authentication. The total bandwidth
cost is thus

B = 80 + 81q + q + 80 + 160 + 160 = (6 + q)l + q bits (3.3)

In the case of n′ = 106, Pfind ≈ 0.99, B is 2667 bits, which can be thought of as
prohibitively large.

3.3.4 Implementation of the Lookup Process

Although the original paper mentions the processing overhead of the reader and
concludes that it is O(n log n), we investigated the constant hiding behind the big
O by implementing the Lookup Process on a Xeon E5345@2.33GHz computer. To
speed up the calculations, we used all practical optimisations and programming
techniques available to us, such as pure binary operations, loop-unrolling and memory
bandwidth minimisation. The results are shown in Table 3.1.

It is clear from Table 3.1 that even if the number of tags in the system is only 106,
the reader would need to be very powerful — a hand-held reader rarely has the speed
of a 2.33GHz Xeon processor. For larger tag populations, the RAM requirement
would also become a problem. Therefore, it is more pertinent to speak about backend

48 3.3. PRIVATE IDENTIFICATION

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

Table 3.1: This table shows the average time and RAM required by the Lookup
Process to find one tag. The Lookup Process was running on a Xeon E5345@2.33GHz
with all optimisations other than assembly-level coding. Pfind was set to 0.99 and
keylength was 81 bits. As the number of tags in the system increases, the time it
takes to identify the tag increases in an almost linear manner. Since memory usage
mainly consists of storing tag keys, it increases linearly with the number of tags in
the system

Number of tags 106 107 108

Time (s) 0.1 1.1 12
Memory (MB) 9.6 96 965

systems that process all incoming identifications and return the tag ID in batch
mode. However, if backend systems must be used, then per-reader IDs are not a
possibility and per-backend IDs must be used. Thus information confinement — one
of the main goals of the paper — cannot be fully achieved.

3.4 Retrieving ki,j

In this section we present an algorithm for exhaustive search and an efficient man-in-
the-middle (MiM) attack to find ki,j . Since the key of the tag is always masked with
the IDj of the reader through ki,j = h(ki||IDj||ki), the attacker can only break the
privacy of the tag when the tag is communicating with the same reader. Since both
tag-to-reader and reader-to-tag authentication only requires the knowledge of ki,j,
retrieving it allows the attacker to both authenticate himself to the original reader
as a legitimate tag, and to authenticate himself to the original tag as a legitimate
reader.

3.4.1 Exhaustive search

The authors strangely forget to mention, indeed they might have overlooked, the
simple exhaustive search against the identification part of the protocol, an attack
vector that all schemes must exhibit that are not information theoretically secure.
Naturally, the identification part of the protocol cannot be information theoretically
secure since it sends a secure message (the ID of the tag) possibly infinite number of
times while sharing just a few bits of secret information with the reader.

The exhaustive search simply executes the Lookup Process with all possible
22l/3+1 key-eqgroups to find the key-eqgroup of ki,j. Given different non-redundant
(αp, V [p]) pairs, the number of possible keys is reduced by a factor of 2 for each
(αp, V [p]) pair. Using the same formula as in Sect. 3.3 and setting r = 0, n′ = 22l/3+1

we find that we need 2l/3 + 1 non-equivalent non-redundant pairs to mount the
attack. An implementation of the algorithm is present in Function Brute force.
In practice, executing this algorithm is extremely time-consuming, due to the size of
the keys involved — the algorithm runs in O(n2l) time.

We have implemented the search algorithm and found it to perform as detailed in

3.4. RETRIEVING K I,J 49

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

Function Brute force(αp − V [p] pairs) Given n number of αp − V [p] pairs
harvested from the tag, this function finds a key ki,j that is in the same key-
eqgroup as ki,j = h(ki, IDj, ki). It essentially tries all possible rp-s that the tag
could have generated, and reduces the keyspace accordingly. For the function
to work, the variable rp must be represented as an l-bit binary.

Input: n number of V [p]− αp pairs
for i← 0 to 2l − 1 do keys[i]← true ;1

rests← 2l;2

for ki,j ← 0 to 2l − 1 do3

for p← 0 to n do4

if DPM(rp ⊕ ki,j) 6= V [p] then keys[k]← false5

end6

end7

for ki,j ← 0 to 2l − 1 do if keys[ki,j] = true then return ki,j;8

Table 3.2: This table shows the performance our implementation of the exhaustive
search. For computing the timing values in the table, we used a Xeon E5345@2.33GHz
CPU. As the key size increases, the time required to break the privacy of the tag
increases at an exponential rate.

Keysize (bits) 27 30 33 36 39 42 45

Time 0.38s 2.9s 27.2s 209s 1462s 13003s 76738s

Table 3.2. on a Xeon E5345@2.33GHz CPU. Due to the time required to execute the
algorithm for large keysizes, it can only be used to brute-force a key that the attacker
has some information about. Using some supporting information, the exhaustive
search can be used to fill out the gaps in (i.e. compute the unknown parts of) the
key.

Once the key-eqgroup of ki,j is found, the attacker can simply try to execute the
hash function h() implemented in the tag to try each of the 2l/3−1 combinations left
against an ω response to find the exact ki,j. As discussed in Sect. 3.2.1 this should
not be difficult even for l = 99 and h =SHA-1.

3.4.2 Man-in-the-middle attack

The man-in-the-middle (MiM) attack gains information about ki,j based on the
success or failure of the authentication. Since success or failure can be represented
in one bit, at each authentication attempt the attacker learns exactly one bit of
information. The attack exploits that with the exception of α1, none of the αp-s are
authenticated: if an attacker modifies α2 into α′2 and the Lookup Process still finds
the key ki,j, then DPM(ki,j ⊕ α′2) = V [2], so she either managed not to invert the
output of any of the majority functions (M -s) in the DPM , or she managed to invert
of an even number of them. However, if DPM(ki,j ⊕ α′2) = V [2], the authentication
fails since the reader fails to find the key ki,j during the Lookup Process, in which
case the attacker can be sure that she must have inverted the output of an impair

50 3.4. RETRIEVING K I,J

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

Table 3.3: This table shows the conclusions that can be drawn by actively modifying
an ongoing protocol session: the attacker needs to invert one bit of α2 at a block’s
2nd or 3rd position and observe the outcome of the protocol. If the tag does not
get accepted as authentic, then she can deduce the information that is present in
the row marked with ×, if the tag does get accepted she can deduce the information
that is present in the row marked with X

Inverted Original α2[x . . . x+ 2] block
bit Auth 000 001

α2[x+ 2] X ki,j[x] = ki,j[x+ 1] ki,j[x] = ki,j[x+ 1]
α2[x+ 2] × ki,j[x] 6= ki,j[x+ 1] ki,j[x] 6= ki,j[x+ 1]
α2[x+ 1] X ki,j[x] = ki,j[x+ 2] ki,j[x] 6= ki,j[x+ 2]
α2[x+ 1] × ki,j[x] 6= ki,j[x+ 2] ki,j[x] = ki,j[x+ 2]

Original α2[x . . . x+ 2]
010 100

α2[x+ 2] X ki,j[x] 6= ki,j[x+ 1] ki,j[x] 6= ki,j[x+ 1]
α2[x+ 2] × ki,j[x] = ki,j[x+ 1] ki,j[x] = ki,j[x+ 1]
α2[x+ 1] X ki,j[x] = ki,j[x+ 2] ki,j[x] 6= ki,j[x+ 2]
α2[x+ 1] × ki,j[x] 6= ki,j[x+ 2] ki,j[x] = ki,j[x+ 2]

number of majority functions in the DPM .

The attacker will take the simplest approach to modifying α2: she will try to
invert one majority function’s output. As a simple example, let us consider the block
α2[x . . . x+2] = 000. In this case M(ki,j [x . . . x+2]⊕α2[x . . . x+2]) = M(ki,j [x . . . x+
2]), so this block’s M will depend solely on the key bits ki,j[x . . . x+ 2]. Let us now
invert the x+2nd bit of α2: M will not change if and only if ki,j [x] = ki,j [x+ 1], since
then no matter what ki,j [x+ 2] is, M = ki,j [x] = ki,j [x+ 1]. However, M will change
if ki,j[x] 6= ki,j[x + 1] since then the majority is decided by ki,j[x + 2] ⊕ α2[x + 2],
which the attacker just inverted. Therefore, by inverting the x+2nd bit of α2, and
observing the authentication, the attacker can conclude whether ki,j[x] = ki,j[x+ 1]
or not.

Reasoning this way, all possible α2 blocks will lead to a conclusion: see Table 3.3
for all the conclusions that can be drawn given any α2 block and an inversion at
either the 2nd or the 3rd bit of the block. From the attack’s point of view a block in
α2 behaves the same as the inversion of the same block (i.e. 000≈111), so only one
of the two is listed.

Using Table 3.3. the attacker only needs two authentication sessions per key
block to narrow down the possible key-combinations to 2l/3. At this point, she will
have two possibilities for each key block. It is sufficient for the attacker to simply
try the recorded set of (αp, V [p]) pairs on one of the 2l/3 combinations. If at least
one pair does not match, then she simply needs to invert the first block to recover
the key-eqgroup of the tag. The whole process thus takes 2 authentication sessions
per key block, and less than one millisecond of processing. For l = 81 this means the
privacy can be broken to a key-equivalence level in a mere 54 protocol sessions.

The MiM attack can be used in tandem with the brute-force attack. If the

3.4. RETRIEVING K I,J 51

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

attacker is willing to invest some time into breaking the scheme, she can use the
MiM attack to learn some information about the first x bits of the key, and then use
the brute-force attack to learn the rest of the l− x bits. As long as l− x is less than
39, this should take very little time for the attacker, and would let him use less active
rounds: in the case of l = 81, instead of the normal 54 active rounds needed, she
would only need 30 active rounds and a couple of minutes to find the key-eqgroup of
ki,j.

To find the exact ki,j of the tag, the attacker would need to perform the same
actions as in the last stage of the brute-force passive attack, i.e. execute the hash
function h(·) for each of the 2l/3−1 remaining combinations and compare it against
an ω response. As discussed in Sect. 3.2.1 this should not be difficult even for l = 99
and h =SHA-1 — it would take only 232 hash operations, which is possible to do in
an hour on a desktop PC.

3.5 Design flaws and their remedies

It is very difficult to design security protocols for RFIDs since the resources available
on this platform are extremely limited. Some security properties must always be
sacrificed in order to fit the security functions on the tag. However, we believe that
the scheme being analysed is not only imperfect due to the limitations of the platform,
but it also exhibits limitations that are due to design flaws. In this section we list a
set of design flaws exhibited by the scheme and then propose some modifications to
overcome the problems detailed.

3.5.1 Design flaws

We have found the following list of design flaws during our analysis of the protocol:

• Identification and authentication boundaries should have been clearly defined.
Had identification and authentication been designed and analysed indepen-
dently, many of the shortcomings described could have been averted

• Identification and authentication keys should have been generated differently.
Had this been the case, the attacks presented would only have recovered the
identification key and so would have been restricted to breaking the privacy.
A simple difference between the generation of the two ki,j-s would have been
enough

• Given that the identification was not cryptographically secured, the integrity of
the data exchanged during identification should have been authenticated during
authentication. It is clear that the identification was not cryptographically
secured since it only used a xor and a majority function to do its work

• The choice of the DPM function is not clearly motivated and its design is not
analysed in a separate paragraph. Such a crucial function of a scheme should
have been fully analysed

52 3.5. DESIGN FLAWS AND THEIR REMEDIES

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

3.5.2 Remedies for the problems found

We believe that RFID protocols that rely on non-standard crypto-primitives is
exceedingly difficult to create in a manner that it sufficiently resists attacks. Therefore,
at least in the short term, it is better to use a well-analysed cryptographic function
such as AES [7], DES [16], Grain [10] etc. In the long term, with sufficient time to
create, analyse, and re-create such non-standard crypto-primitives, their hardness
will rise to the same level as currently accepted cryto-primitives, thus allowing their
implementation in RFIDs.

Given our reasoning above, the best way to mend the private identification part
of the protocol in the short term is to use a standard cryptographic primitive such as
hash-chains as in [18], or key-trees as in [15]. Both of these schemes and their improved
versions are detailed in Sect. 2.2.3 and 2.2.4, respectively. Authentication can be
then added in multiple ways, as detailed in Sect. 2.3. A particularly appropriate
choice would be the use of a key-tree protocol as these allow for both authentication
and private identification.

3.6 Conclusions

During our analysis of the Molva-Di Pietro scheme we have uncovered multiple
flaws, among them tag identification ambiguity, possibility of active attack and
unanticipated processing slowness. We have fully analysed the scheme from multiple
viewpoints and have found a multitude of obscure features such as pair-equivalences.
We presented a detailed list of design flaws that we have found during our analysis
and finally, we have given a set of improvement ideas.

In parallel to the publication of the contents of this chapter in [25], another
attack by Deursen et al. have emerged [27]. This new attack is a fully passive
algebraic attack that requires very little hardware effort to break the key Ki,j to the
keq-equivalence level using only 2l/q communications between a reader and a tag.
Since the publication of the contents of this chapter, the designers of the protocol
have updated their scheme into the Ff family of protocols [3]. This new version of
the protocol counters the shortcomings and attacks demonstrated in this chapter.

The aim of this chapter was to give an example for an ad-hoc protocol that seems
to be secure on the surface but if fully analysed, reveleals serious weaknesses. The
weaknesses stemmed from the authors overlooking certain attack methods, namely
the active attack detailed in this chapter, and the passive attack detailed in [27].
These shortcomings are in no way unique to this ad-hoc protocol: as we shall see in
the next chapter, the author of this analysis himself has commited similar mistakes
when designing an ad-hoc protocol.

3.6. CONCLUSIONS 53

CHAPTER 3. ANALYSING THE MOLVA AND DI PIETRO PRIVATE RFID
AUTHENTICATION SCHEME

54 3.6. CONCLUSIONS

Chapter 4

Secret Shuffling

In this chapter we demonstrate a private identification protocol for very cheap RFID
tags. The target of this scheme was to require almost no computation, but to be
secure the tag’s privacy against moderate attackers. The security of this scheme,
called the Probabilistic Identification Protocol (ProbIP), relied on the hardness of
a randomly generated NP-complete decision problem. However, after the scheme
was published by Castelluccia and Soos [5] it was shown to be insecure by Ouafi et
al. [19].

Organisation

We describe the probabilistic identification protocol (ProbIP) in Sect. 4.1. Then, in
Sect. 4.2 we describe the attack by Ouafi et al. [19]. Finally, in Sect. 4.3 we conclude
this Chapter.

4.1 Probabilistic Identification Protocol

In this section, we describe the Probabilistic Identification Protocol (ProbIP), and
provide some implementation details. In ProbIP, each tag Tj is configured with a
unique K-bit long random secret key, kj. The key is used as a bit-vector, with kj[1]
being the first bit, kj [2] being the second, etc. The back-end server, B, stores all the
keys that are assigned to each of the n tags.

4.1.1 Protocol description

The protocol, between tag Tj, the reader, and the backend B is as follows:

1. The reader initiates the identification by broadcasting a HELLO message

2. Upon reception of a HELLO message, Tj replies with P packets and a FINISHED

message, where P is a system parameter that will be defined in Sect. 5.1.1. A
packet is a list of 2L values, <a1, b1>, <a2, b2> . . . , <aL, bL>, where ai is a random
key index ai

r← [1, K] that is never repeated in the same packet, and bi is a
random bit bi

r← {0, 1} such that the equation

L∑
i=1

[
kj[ai]⊕ bi

]
= L/2 (4.1)

55

CHAPTER 4. SECRET SHUFFLING

is satisfied, where L is even. Since addition is commutative, as long as the
pairs <ai, bi> are not changed, the order of the pairs can change. We note these
pairs in the following fashion: ai if bi = 1 and ¬ai if bi = 0.

3. Upon reception of the packets and the FINISHED message, the reader sends the
packets it received to B, which computes the result of eq. (4.1) for each packet
for every tag’s key. The key that fits all the packets is suspected to have been
used to send the packets. This information is then relayed back to the reader.

4.1.2 Example protocol run

To illustrate the protocol, let us consider a system that uses the artificially small
system parameters L = 4, K = 6 and n = 4. In this example, T1 is configured with
the key k1 =011001, T2 with the key k2 =100101, T3 with the key k3 =011110 and
finally T4 with k4 =001110.

Let us assume the reader R is trying to identify tag T2. An example protocol
run between R and T2 is the following:

In a step-by-step fashion, the following happens during this protocol run:

1. R broadcasts a HELLO message.

2. Tag T2 sends two packets and the FINISHED message. The first packet is defined
by [1 2 5 6], for which eq. (4.1) wrt. k2 is (1⊕1)+(0⊕0)+(0⊕1)+(1⊕0) =
2 = L/2 . The second packet is defined by [2 3 4 5] for which eq. (4.1) wrt.
k2 is (0⊕ 1) + (0⊕ 0) + (1⊕ 0) + (0⊕ 0) = 2 = L/2 .

3. Upon reception of the first packet, the reader computes for each of the 4 tags
the eq. (4.1). R gets that for T1 it is 4, for T2 it is 2, for T3 it is 2 and for T4 it
is 1. The reader, therefore, keeps only tags T2 and T3 as possible candidates.

4. Upon reception of the second packet, the reader computes for tags T2 and T3
the eq. (4.1). R gets that for T2 it is 2 and for T3 it is 3. At this point, tag T2
has been successfully identified by R.

4.1.3 Minimum number of packets needed by the reader

Let us compute the minimum amount of packets needed by R to correctly identify
a tag. Since the protocol is probabilistic, there is always a non-zero probability fp
that the number of packets sent is not enough for the reader to find the tag sending
the packets. However, this probability can be adjusted between 0 < fp < 1, with
the penalty that the closer fp gets to 1, the more packets need to be sent.

56 4.1. PROBABILISTIC IDENTIFICATION PROTOCOL

CHAPTER 4. SECRET SHUFFLING

The total number of packets possible for all keys is
(

2K
L

)
, as ai comes from a set

of size K and bi comes from a set of size 2, whereas for a given key, the number of
possible packets is only

(
K

L/2

)(
K−L/2

L/2

)
since eq. (4.1) must hold and indices cannot

be repeated in a packet. The ratio of these two numbers

R =

(
K

L/2

)(
K−L/2

L/2

)
(

2K
L

) (4.2)

is the probability that a random packet is valid for a random tag. As an example,
for K = 400, L = 10, R ≈ 0.232 .

Given n tags, the false positive probability, fp, that p packets generated by a
given tag match another tag’s key can be calculated as fp = n ∗Rp . The number
of packets sent from the tag to the reader should then be

P =

⌈
log(1/n ∗ fp)

log(R)

⌉
(4.3)

which is, for the example parameters of L = 10, fp = 0.1 and n = 107, P = d12.62e =
13. If these packets do not suffice (which has a low chance of happening), repeated
identification attempts are carried out by the reader until it finds the correct tag.

4.1.4 Parameters

The parameter K must be at least dlog2(n)e bits, but as the security of the system
relies on the condition that n � 2K , the larger this parameter, the more secure
the system. Also, K should be at least an order of magnitude larger than L. The
parameter L must be such that L/2 is an integer. When deciding the parameters,
the number of bits sent in one identification

B = P ∗ L ∗ (dlog2(K)e+ 1) (4.4)

which is also the minimum amount of random bits that need to be generated during
an identification, must be kept in mind. The parameters L,K and n all influence
this number. As an example, for K = 400, L = 10 and n = 107, B = 1300 bits. It is
important to note that sending this information is just a fraction of a second given a
52.969 kb/s label-to-interrogator link in Class 1 EPC tags [9].

4.1.5 Implementation of the protocol in the backend

This subsection describes the algorithm used by the backend, B, to identify the tag
using the packets it sent. We first refer to B as a single entity and later describe how
the load can be distributed among multiple entities. It is assumed that B knows the
keys of all the tags in the system (k1 . . . kn). These keys are stored in a ’column-like’
order k1[i], k2[i], . . . kn[i] for all i ∈ K. We call these columns Col1, . . . ColK , where
Col1 stores the first bit of all tags’ keys.

At each protocol instance, the following is executed by B:

1. B fills with zeros a temporary n-long byte-vector temp. This will store the
result of the eq. (4.1) for each tag.

4.1. PROBABILISTIC IDENTIFICATION PROTOCOL 57

CHAPTER 4. SECRET SHUFFLING

2. B performs the following for each of the packets’ L pairs <ai, bi>: For each tag
Tj in the system, temp[j] is incremented by one if Colai

[j]⊕ bi = 1 . Iteration
through the temp and the Colai

can be parallel, so for a given index, this
requires 3n processing steps.

3. Once all the pairs in the packet have been considered, all tags Tj for which
temp[j] = L/2 could have sent the packet.

4. Steps 2-3 are repeated for all packets with different temp-s, i.e. temp1 for
packet 1, temp2 for packet 2, etc.

5. The identified tag is Tj for which tempp[j] = L/2 for all p ∈ [1, P] .

In essence, the algorithm computes, using a non-strict notation, tempp[j] :=
[packetp][kj] for every tag’s key and every packet. Then it checks if there exists a Tj

for which tempp[j] = L/2 for all p. The amount of data that needs to be stored in
memory by the algorithm is

(K ∗ n)/8 + P ∗ n bytes

which is essentially the keys and some insignificant amount of inter-algorithmic data.
The number of processing steps required is

P ∗ L ∗ 3n+ P ∗ n (4.5)

i.e. if P was independent of n, it would be linear in n. However, due to P being
dependent on n, it is actually O(n log n) (see Sect. 5.1.1. for details). As an example,
if K = 400, L = 10, n = 107, P = 13i then the overall memory requirement is
(400 ∗ 107)/8 + 13 ∗ 107 bytes≈ 600MB and the overall processing requirement is
13 ∗ 107 ∗ (3 ∗ 10 + 1) ≈ 4e9 processing steps. Parallelisation of this algorithm is
simple: for instance, each packet can be sent to a different server, and an aggregation
server can be used to compute the final result (step 5). This would bring down both
the memory and processing requirement of individual computers or processor cores.

The algorithm was implemented on a Xeon E5345@2.33GHz in C++. The
implemented algorithm used exactly as much memory as predicted and although full
assembly-level optimisation and threading was not carried out, it was able to identify
a tag in 1.2 s with parameters L = 10, K = 400, n = 107. The required backend
speed can be calculated given single-tag identification processing requirements and
the maximum number of identification sessions per second. The required speed can
then be achieved using multiple computers or FPGAs with parallelisation. The cost
of such a backend should not be a problem given that simply buying 107 tags costs
about $1 million.

It is important to note that an adversary does not know the configured set of
keys, and would need to run this algorithm with n = 2K , which would result in an
impossibly large processing requirement.

iSee Sect. 5.1.1 why P = 13

58 4.1. PROBABILISTIC IDENTIFICATION PROTOCOL

CHAPTER 4. SECRET SHUFFLING

4.1.6 Implementation of the protocol in the tag

To send the packets, the tag needs to run an algorithm that generates packets accord-
ing to eq. (4.1). Such an algorithm is trivial to implement once a source of random
numbers is available. In generating good random numbers, the inherent wireless
nature of RFID tags is to our help: tags sense their environment’s electromagnetic
and temperature-fluctuations and can use it to harvest entropy. Assuming the
attacker cannot steal from and imperceptibly return tags to their legitimate owners,
tags are rarely in an environment where the attacker can control all parameters, and
even if so, the required equipment would be very specialised and costly.

Designing a relatively secure pseudo random number generator (PRNG) is not
the goal of this protocol description, but we state some design directions along
which such PRNGs could be implemented. Silicon-based Physically Unclonable
Functions (PUFs) [4] are ideal for random number generation [17] on RFIDs as per
its description in Sect. 2.3.5. In [4] the authors claim to have implemented such
a PUF in about 545 gate equivalents. Initial SRAM-states are also exploitable as
described in [11], and they could be used as seed or as extra entropy added to the
output of the PUF. As a security measure, readers could also offer entropy to tags on
each reading, which the tag could XOR into its PRNG’s seed thus only increasing its
entropy, even if the reader is controlled by the attacker. Although it is hard to know
the precise gate-count needed for such a PRNG, we use a conservative estimate of
700 gate equivalents.

Even though the presented ideas for random number generation do not offer
suitable safety for high-security applications, we believe they are adequate in the
case of RFID tags, where a sufficiently powerful and determined attacker can in any
case break the privacy of a tag by simply opening it and examining its contents. The
goal is not to completely secure the tag (since it is impossible, at least with current
schemes using similar gate-counts), the goal is to defend it to such an extent that it
is exceedingly difficult and economically non-viable to break its privacy.

Implementation complexity

The ROM needed to store a 400-bit key is only 400 NOT gates, some of which
are blown during tag personalisation to configure the unique tag key. A simple
packet-generation algorithm needs about 100 and the PRNG is expected to need at
most 700 gate equivalents, which gives a total of about 1200 gate equivalents.

4.2 The attack by Ouafi et al.

Ouafi et al. [19] have broken the security of the ProbIP protocol by using Gaussian
elimination on the packets. The main idea of the attack is that a set of packets can

4.2. THE ATTACK BY OUAFI ET AL. 59

CHAPTER 4. SECRET SHUFFLING

be represented as

L∑
i=1

v1
i (K[i]⊕ b1i) = L/2

L∑
i=1

v2
i (K[i]⊕ b2i) = L/2

...
L∑

i=1

vl
i(K[i]⊕ bli) = L/2

where l is the number of packets gathered by the attacker, v is the indicator function
whether a given key bit is in the packet, and bi is the random bit in the packet
associated with each key index. The authors observe that these equations are
solveable using Gaussian elimination once enough packets are collected, which is
calculated as P in the previous section. Gaussian elimination only requires about
7 ·mlog27 operations using Strassen’s algorithm [26] where m is the size of the matrix.
Therefore, for the suggested parameter of K = 400, solving the system of equations
takes at most 224 operations — which takes negligible time on a modern computer.

As a counter-measure against the presented attack, Ouafi et al. propose to update
the key at each identification. Such a counter-measure however, would bring about
the same problems that plagues the OSK protocol [13]: denial of service and the need
of a hash function to update the internal state. Further details on these problems
can be found in Sect. 2.2.3 where the OSK protocol family is discussed.

4.3 Conclusions

In this chapter we have described the ProbIP protocol published by Castelluccia
and Soos and demonstrated the attack against it by Ouafi et al. In hindsight we
can say that the security of the scheme was over-evaluated because the original
security analysis was through SAT solvers, which are very slow to execute Gaussian
elimination, leading to the authors overlooking this important avenue of attack.
However, partially due to this attack, we were encouraged to implement Gaussian
elimination into SAT solvers, a description of which is present in Chapter 7. With
this important addition to SAT solvers, a similar mistake could be avoided, though
a more sophisticated attack than the use of SAT solvers could possibly be found
against many schemes. Such a sophisticated attack could, for example, use out some
hidden statistical weaknesses, or other, less apparent internal symmetries of the
scheme, thereby circumventing the original hard problem the scheme’s security was
based upon.

The aim of this chapter was to give another example, besides that of the Di
Pietro-Molva protocol present in the previous chapter, that ad-hoc protocols are
notoriously difficult to design. To break the security of ProbIP, it sufficed for the
authors of [19] to simply look at the description of the protocol from another angle
(namely, from an algebraic cryptanalysis point of view) to discover its flaws.

60 4.3. CONCLUSIONS

Chapter 5

Noisy Secret Shuffling

In this chapter, we describe an improvement to the ProbIP scheme, called Enhanced
Probabilistic Identification Protocol (EProbIP). EProbIP adds noise to the original
scheme, thereby changing the underlying problem to an NP-hard optimisation
problem, strengthening the protocol against attacks in general, and against the
attack by Ouafi et al. [19] in particular. We analyse this improved protocol’s security
using a satisfiability solver that we have modified for this purpose: we devised a
way to modify a modern satisfiability solver to solve certain maximum satisfiability
problems faster, which we also consider an important contribution of this chapter.

With EProbIP we wish to demonstrate that even very small RFID tags with
almost no computation capabilities can still provide some level of privacy protection.
By moderate attackers we mean that the attackers have limited access to tags and
they are using off-the-shelf equipment. Providing a scheme that is secure against
very powerful attackers is, probably, impossible without reasonable processing power
and/or large memory. However, we show that reasonable security is feasible with
little memory and almost no computation. We believe that this level of security is
enough for most limited value items (e.g. bottles, fruits) tagged with RFIDs.

Organisation

We describe the enhanced version of the ProbIP, EProbIP, in Sect. 5.1. Next, in
Sect. 5.2 provide a security analysis of this enhanced protocol. Finally, in Sect. 5.3
we draw some conclusions.

5.1 Error-introducing ProbIP

In this section we introduce the Error-introducing Probabilistic Identification Protocol
(EProbIP), which is similar to ProbIP (see Chapter 4), but the tag introduces some
completely random packets into the communication, which changes the attained
security level significantly. Conceptually, this is because the reader is less distracted
by the erroneous packets, since it knows that there are only a very few keys (at most
the no. of tags in the system, n) that could or could not fit the packet. An attacker,
on the other hand, is required to consider all 2K � n possible keys.

The completely random packets, which may or may not conform to eq. (4.1) and
which do not have any repeated indexes are called Noise-packets. Normal packets,

61

CHAPTER 5. NOISY SECRET SHUFFLING

i.e. packets deliberately conforming to e.q. (4.1) and not having any repeated indexes
are called Valid-packets. Valid- and Noise-packets have a Bernoulli distribution of
P (packet is Noise-packet) = err. This change in the scheme overcomes the attack
by Ouafi et al., and at the same time keeps the tag implementation footprint low
and does not force the backend do significantly more calculations than before.

5.1.1 Minimum number of packets needed by the backend
server

In this subsection, we compute the minimum amount of packets needed by backend
B to correctly identify the tag TS that is sending the packets. Since the protocol is
probabilistic, there is always an adjustable probability fp > 0 that the number of
packets sent is not enough.

To distinguish TS (the tag sending the packets) from the rest, the backend server
ranks the tags according to how many packets received satisfy eq. (4.1) wrt. the key
of a tag — the more packets satisfy the equation wrt. the key of a tag, the higher the
tag’s rank. The tag that has the highest ranking is suspected to be TS. Therefore,
we need to calculate the chance fp that any tag is ranked at the same or higher level
than TS. To calculate this, we first calculate the probability R that a Valid-packet
fits a tag other than TS. Then we calculate the chances of a tag ranked at a certain
rank or higher.

Let us define packet-space P as all the different Noise-packets possible. The size
of this space is

(
K
L

)
2L, since in a packet there are L unordered pairs <ai, bi>, where

ai comes from a set of size K and cannot be repeated, and bi comes from a set of
size 2.

A certain tag emitting Valid-packets can only generate a subset T of the packet-
space P. The size of T can be calculated as follows. Let us group each possible
<ai, bi> pair into two K-sized sets: in set 0 ai ⊕ bi = 0 and in set 1 ai ⊕ bi = 1. To
generate a Valid-packet, L/2 elements must be selected from each set, making sure

no indexes are repeated, so |T|=
(

K
L/2

)(
K−L/2

L/2

)
.

Since T is evenly distributed in P, the ratio R = T
P , or

R =

(
K

L/2

)(
K−L/2

L/2

)
(

K
L

)
2L

is the probability that a Noise-packet by TS conforms to eq. (4.1) of a tag. Since
T
P is relatively large and there are many tags in the system (all with different T-s),
the probability that a Valid-packet by TS conforms to eq. (4.1) of a tag can also be
approximated as being R. As an example, for K = 400, L = 10, R = 0.246 .

Let us note the binomial distribution’s probability mass function as Bi(k, n, p)
which gives the probability that out of n random events each occurring with prob-
ability p, what is the chance that exactly k occurs. Furthermore, let us note the
binomial distribution’s cumulative distribution function as BiC(k, n, p) which gives
the probability that out of n random events each occurring with probability p, what
is the chance that at most k occurs.

The probability that out of P packets sent by TS, exactly x conform to eq. (4.1)

62 5.1. ERROR-INTRODUCING PROBIP

CHAPTER 5. NOISY SECRET SHUFFLING

is

fit send(P, x) =
x∑

i=0

[
Bi(P, x− i, 1− err) ∗ Bi(P − (x− i), i, R)

]

since Noise-packets can also (by chance) conform to eq. (4.1). The probability that
at least one tag out of the incorrect n− 1 tags is ranked at level lev or higher (i.e.
at least lev packets conform to eq. (4.1) according to its key) given P packets is

probrank(P, lev) = 1−
(
BiC(P, lev − 1, R)

)n−1

Therefore the chance that there is any tag ranked at the same or higher level than
TS given that TS sends P packets is:

fp :=
P∑

i=0

[
probrank(P, i) ∗ fit send(P, i)

]

As an example, for the parameters K = 400, L = 10, P = 20 and err = 0.1,
fp = 0.086 . In other words, there is about 91% chance that if a tag sends 20 packets
during identification, it will be ranked highest by B and so correctly identified. As a
comparison, in case of the ProbIP protocol (i.e. err = 0) for a similar fp only 13
packets sufficed.

From a practical point of view, we note that for any reasonable fp, the err must
be limited to around < 0.2 otherwise P starts to get very large and the protocol
becomes impractical to use.

5.1.2 Modified backend server and tag implementations

The algorithm executed by the backend is essentially the same as for ProbIP, presented
in Sect. 4.1.5. The only difference is that the temp1 . . . tempP blocks need to be
processed differently: in step 5. each tag is now given a rank based on how many
packets fit on the key of the tag. The tag that has the highest rank is then suspected
of sending the packets. There is no real extra memory need to do this, and the
processing is only increased by P · n steps to

3n · P · L+ 2n · P

instead of eq. (4.5). As was explained in the previous subsection, for parameters
K = 400, L = 10, n = 107, err = 0.1, P must be 20 (compared to 13 for the ProbIP),
and so our reference algorithm implementation identified one tag amongst 107 in
2.6 s instead of 1.2 s. For 106 tags, the time required shrank to 0.2 s.

The difference between ProbIP’s and EProbIP’s tag implementation is an invoca-
tion of the PRNG before packet-generation. For instance, given that err = 0.1, if
PRNG() mod 10 = 0 the tag sends a packet filled with data from the PRNG output
(making sure no indexes are repeated), otherwise it sends a packet as usual.

5.1. ERROR-INTRODUCING PROBIP 63

CHAPTER 5. NOISY SECRET SHUFFLING

5.1.3 Integration of EProbIP into the EPC standard

The EPC standard [9] requires the unique identifier, the EPC code, to be sent after
the singulation of the tag as is present in Fig. 1.2 in Chapter 1. In order to protect
the tag from loosing its anonymity at a lower level than the level where the EProbIP
protocol runs, the EPC singulation protocol must be changed. Therefore, when
implementing the EProbIP protocol into an EPC tag, the EPC code of the tag must
be changed to a fix value for all tags. An example such EPC code could be the
all-zero ID, or if that is reserved by the EPC consortium, then any other fixed value.
This way, all tags that implement the EProbIP protocol will belong to an anonymity
group that can be distinguished from other tags through their fixed EPC code, but
cannot be distinguished from one another, other than through breaking the security
of the EProbIP protocol.

5.2 Security analysis of EProbIP

In this section we evaluate the security of the EProbIP scheme using the “strong
privacy” model proposed by Juels and Weis in [12]. In EProbIP, tags’ keys are
completely independent of each other thus the corruption of one tag does not affect
the security of the rest of the system. Therefore, it is useless for adversary A to use
the SetKey procedure to change the key of tags. It is also useless for A to examine
any other tags than the ones it will pick, i.e. TA and TB. In EProbIP, ReaderInit
is a simple fixed HELLO message, so it need not be executed by A at all. Therefore,
in view of properties of EProbIP, the privacy experiment of the model can be refined
to what is present in Fig. 5.1.

5.2.1 Attack vectors

In order to assess the security level offered by the protocol, a thorough analysis of the
Valid-packets is needed, since they are the sole source of useful information emitted
by the tag. For clarity, let us first define some technical terms used in satisfiability
research. SAT is a shorthand for ’satisfiability’ or ’satisfiable’. A literal is either a
variable or its negation, i.e. a or ¬a. A clause is a disjunction (or-ing) of literals.
CNF, Conjunctive Normal Form, is a conjunction (and-ing) of clauses. A SAT-solver
is a program that tries to find a solution to a problem described as a CNF – if it
fails, the result is UNSAT, if it succeeds, the result is SAT. Pseudo-Boolean or simply
PB constraints have the form

∑
i(ai ∗ li) ≥ k, where ai, k ∈ R and li is a literal. The

L/2-in-L LSAT problem’s input instance is a collection of L-set of literals and the
problem is to decide whether there exists an assignment of variables such that in
each set exactly L/2 literals are true and L/2 literals are false.

Every Valid-packet,as its definition in eq. (4.1) suggests, can be converted to
two PB constraints: e.g. if K = 10, L = 4, the packet [7 2 8 ¬9] becomes:

v7 + v2 + v8 + ¬v9 ≥ 2

v7 + v2 + v8 + ¬v9 ≤ 2

so, PB solvers are one of the possible methods for attacking the privacy of tags.

64 5.2. SECURITY ANALYSIS OF EPROBIP

CHAPTER 5. NOISY SECRET SHUFFLING

Experiment Exppriv
A,S [K,n, xA + xB + xC]:

Setup:

(1) Generate keys (k1, . . . , kn) uniquely and randomly with GenKey

(2) Initialize R with keys (k1, . . . , kn)

(3) Set each Ti’s key ki with a SetKey call

Phase 1 (Learning):

(4) Let A perform xA TagInit calls with TA and let it record the received
packets into the set XA

(5) Let A perform xB TagInit calls with TB and let it record the received
packets into the set XB

Phase 2 (Challenge):

(6) Let TC
r← {TA, TB}

(7) Let A perform xC TagInit calls with TC and let it record the received
packets into the set XC

(8) Let A perform calculations on the recorded packets in order to make an
educated guess whether TC = TA or TC = TB.

Exp succeeds if A guessed TC correctly

Figure 5.1: The privacy experiment as proposed by Juels and Weis in [12], refined to
the specifics of EProbIP

Looking at packets in another way, every Valid-packet is made up of an set of L
literals (where one pair <ai, bi> describes a literal) and as eq. (4.1) implies, half of
the literals must be true and half of them must be false. Therefore, Valid-packets
represent an L/2-in-L LSAT problem, which is NP-hard if L > 2 as indicated by
Schaefer’s dichotomy theorem [23]. Consequently, when emitting only Valid-packets,
the tags are generating a random L/2-in-L LSAT problem on-the-fly and so breaking
their privacy would entail finding a solution to an NP-complete decision problem.
Since tags are also emitting Noise-packets, the attacker is faced with an optimisation
version of the original problem.

The analysis of the packets imply that the only tools able to break the scheme
are either SAT solvers, Pseudo-Boolean solvers, or specialised methods that are
a combination of these methods tailored to the needs of this specific case. The
original ProbIP protocol’s best attack vector was through Gaussian elimination. For
EProbIP, adding the packets received as rows to a matrix (as is present in Sect. 4.2)
and solving using Gaussian elimination leads to no results, as the resulting linear
system of equations has no solutions. This is because the Noise-packets, which are
impossible to filter out by the attacker, are also be present in the matrix, but the

5.2. SECURITY ANALYSIS OF EPROBIP 65

CHAPTER 5. NOISY SECRET SHUFFLING

key of the tag has an exceedingly high chance not to fit the Noise-packets.

In this section, we present two methods to break the privacy of the protocol: a
computationally-intensive approach, which uses a traditional PB solver and a packet-
intensive approach, which uses a custom-built solver. Neither of the approaches need
the observation of both TA and TB in Phase 1 of the privacy experiment, we therefore
picked TA to observe in Phase 1. In short, the two approaches are the following:

Computationally intensive approach

Execute a PB solver on the packets received from TA and TC and try to find a
solution that satisfies the most packets – if the solution found satisfies less than a
certain threshold Th number of packets, then TC 6= TA (consequently, TC = TB).
Otherwise, TC = TA. This is because, if TC = TB we are expecting that the solver
finds the key of the tag and so only a very low rate (≈ err) of packets’ equations
will not be satisfied. However, if TC 6= TA much more will be unsatisfied by the best
solution found, since the keys of the two tags are different.

This approach is a straight-forward approach. However, since the solver needs
to find a solution that satisfies the most equations generated from the packets, the
problem is an optimisation problem, and belongs to the MAX-SNP-hard class, so it is
very difficult to solve. Therefore, the processing for this approach for any reasonable
set of parameters is extremely high. A detailed description of the parameters used
in this approach is in Sect. 5.2.2.

Packet-intensive approach

This approach exploits the property of the scheme that as soon as there are enough
packets, guessing only a relatively small number of K’s bits, multiple packets will
indicate other bits that must be set, these new bits will indicate further bits, and
eventually all bits of the key are recovered. The multiplicity of packets that indicate
other bits to be set is what makes this attack possible, as there is only a minor
probability that all these packets are Noise-packets. In essence, this is an algorithm
that takes as an input more packets than would be necessary, and makes decisions
based on multiple packets.

5.2.2 Computationally-intensive approach

In this subsection, we compute the parameters needed to win the privacy experiment
using the computationally-intensive approach. In a nutshell, the computationally-
intensive approach is the following: execute a PB solver on the constraint set defined
by XA ∪XC and give an objective function to the solver such that the number of
packets not satisfied should be minimised. If the solution found satisfies less than
a certain threshold Th number of packets, then TC 6= TA (consequently, TC = TB).
Otherwise, TC = TA.

We now determine the value xA, xB and the threshold Th for which the chance
of the attacker to correctly identify whether TC = TA or not is a chosen probability
Probatt < 1. Given there are x Valid-packets relating to TA’s key, y Valid-packets
relating to TC ’s key, and z Noise-packets, the chance that the maximum number of

66 5.2. SECURITY ANALYSIS OF EPROBIP

CHAPTER 5. NOISY SECRET SHUFFLING

satisfiable packets is less than Th (Th ≤ x+ y + z) can be approximated as

rel(x, y, z) = max

[
BiC(x+ y + z, Th− 1, r)

]n
[
BiC(x+ min(x, y), Th−

max(x, y), r)
]1+(n−1)∗rmax(x,y)

if Th > max(x, y) and Th ≤ x + y + z. Otherwise, if Th > x + y + z it is 1 and
if Th ≤ max(x, y) it is 0. Therefore, the chance that the maximum number of
satisfiable packets is more or equal to Th is 1− rel(x, y, z).

Using function rel(x, y, z), the chance that if xA packets are sent by TA, and xC

by TC , where TA 6= TC , the maximum number of satisfiable packets is less than Th is

diff less(xA, xC) =
xA∑
i=0

xC∑
j=0

[
Bi(xA, i, 1− err)∗

Bi(xC , j, 1− err) ∗ rel(i, j, (xA − i) + (xC − j))
]

Similarly, the chance that if xA packets are sent by TA, and xC by TC , where TA = TC ,
the maximum number of satisfiable packets is more or equal to Th is

same moreeq(xA, xC) =
xA+xC∑

i=0

[
Bi(xA + xC , i, 1− err) ∗ (1− rel(i, 0, xA + xC − i))

]

The goal of the attacker is then to select a number of packets, Patt, a corresponding
threshold Th, and a distribution of Patt packets between xA and xC such that

Probatt ≈ diff less(xA, xC)

≈ same moreeq(xA, xC)

For example, using the parameters K = 400, L = 10, err = 0.1, Th = 141 and
Patt = 266 distributed evenly between TA and TC gives a Probatt ≈ 90% chance for
the attacker to identify whether TA = TC or not. This is achieved by running a PB
solver on the constraints defined by the packets gathered, and counting how many
packets are satisfied by the solution: if more or equal to 241 are satisfied, A can be
90% sure that TA = TC , otherwise she can be 99% sure that TA 6= TC .

5.2.3 Packet-intensive approach

In a nutshell, the packet-intensive approach takes as input many more packets than
would be necessary to win the privacy experiment, and uses out the fact that the
majority of the observed packets are Valid-packets. The algorithm guesses some bits
to all combinations and observes what these guesses indicate when applied to the
observed packets. If multiple packets advocate that a certain bit must be set given
the guesses, the algorithm sets these bits, and continues. If the final result does not
satisfy most packets, the algorithm goes back and guesses the original set of bits

5.2. SECURITY ANALYSIS OF EPROBIP 67

CHAPTER 5. NOISY SECRET SHUFFLING

Function EProbIP break(packets). This function takes as an input the ob-
served set of packets from the two tags TA and TC given as a challenge to the
attacker, and returns whether the two tags are the same or different, winning
the privacy experiment. To achieve this, the function guesses a set of key bits
to a value, and tries to fill in the rest of the key bits. If none of the 2k guess
combinations give an acceptable result, the two sets of recorded packets must
have come from two different tags. If there is a combination that satisfies a
good enough portion of the packets, the packets must have come from the same
tag, and the key of the tag is recovered.

Input: packets XA ∪XC

Output: TA = TC or TA 6= TC

Pick a set of k most prevalent key bits;1

foreach combination of true-false for the picked bits do2

picked key bits ← the selected combination;3

while enough packets indicate that a key bit must be set to a value do4

key bit ← indicated value;5

end6

if all key bits are set and the satisfied portion of packets is about 1− err7

then
return TA = TC ;8

end9

end10

return TA 6= TC ;11

to some other values and starts again. If no combination of guessed values satisfies
about 1 − err portion of the packets, then the packets must have come from two
different tags. But, if the algorithm finds a K that satisfies about 1− err portion of
the packets, than the packets have come form the same tag, and the attacker also
recovers the key of the tag.

The execution of this algorithm is present in function EProbIP break. It first
guesses k > L/2 bits whose indices were observed the most. There are 2k different
ways to guess these bits, and so the rest of the algorithm needs to be executed at
most 2k times. The next step of the attacker is to collect all packets that have these
bits set, and give a mark to all the other indexes in the packet. If a given bit has
enough marks, the bit is set to the proposed value, and the algorithm scans through
the packets if there are any new that have at least L/2 bits set. If so, the remaining
indexes in the packets are again marked, and the algorithm continues in this fashion.

Implementation

To properly evaluate the complexity of this algorithm, we needed an implementation
that employs all possible optimisations. We have found that the best performance is
achieved using a modified SAT solver that takes into account the error rate of the
packets in order to win the privacy experiment. To win the privacy experiment, the
attacker executes a modified SAT solver on the constraint set defined by XA ∪XC

that can make decisions based on multiple packets to counter the Noise-packets. If
the answer of the modified solver is unsatisfiable (UNSAT) then TA 6= TC . Otherwise,

68 5.2. SECURITY ANALYSIS OF EPROBIP

CHAPTER 5. NOISY SECRET SHUFFLING

TA = TC .

We decided to modify the MiniSat SAT solver to suit our needs. MiniSat was
chosen because it is one of the fastest SAT solvers and also had its source code
available. The technique by which we modified MiniSat to solve specially crafted
MAX-SAT problems is generic and so can be applied to most modern conflict-driven
SAT solvers for various problems.

For input conversion reasons, we first numbered the packets that were obtained
during the privacy experiment. To feed the packets to the solver, we had to first
convert every packet to a set of clauses. Once converted, every clause was marked
with the packet number it came from. The conversion used did not add or remove
any variables, i.e. it did not simplify the problem or made any alteration to it.

Before getting into details, the definition of some terms used in SAT solvers is
necessary.Propagation occurs when all but one literal is assigned in a clause, and
all assigned literals are false – in this case, the unassigned literal must be assigned
to true in order to satisfy the clause. Conflict occurs when all literals are assigned
to false in a clause – in this case, the clause cannot be satisfied, and one of the
assignments must be undone.

MiniSat uses the DPLL algorithm [8] to find a satisfying solution to a problem
given as a set of clauses. In short, the DPLL algorithm is a backtracking-based,
depth-first search algorithm that tries to find a satisfying variable assignment to
satisfy the given set of clauses. In more detail, the DPLL works as follows. It picks a
variable, assigns it to true or false, and examines the clauses if any propagation can
be made from this variable assignment. If so, it makes those propagations and checks
if any new propagations can be made from the clauses given the newly assigned
variables. It repeats this until there are either no more propagations that can be
made, or if it encounters a conflict. If it encountered a conflict, it jumps back, assigns
the variable it guessed to its opposite, and starts again. If it does not encounter
a conflict, it again picks a variable, assigns it to true or false, and the algorithm
continues from here. These steps are repeated until either a solution is found, i.e.
the result is SAT, or the whole search-space is exhausted without any solution being
found, i.e. the result is UNSAT. A more detailed description of DPLL-based SAT
solvers is given in Sect. 7.1.1.

To account for multiple packets advocating the same propagations and conflicts,
we modified the DPLL algorithm to what is present in Function Multi-DPLL. A
short description of the modifications follows. Instead of assigning all variables
immediately to the propagations to be made, the propagations are stored for the
duration of a round (steps 3 to 3) in the set prop votes. A round examines all the
clauses that the newly assigned variables could influence to cause a propagation or
a conflict. After each round, the votes for the propagations are examined (steps 3
to 3). If a propagation is suggested by more than prop lim number of packets, the
propagation is made (step 3). Otherwise, it is rejected. Therefore, propagations
are made in batches. Conflicts are also only trusted during a round if more than a
certain number of packets (confl lim) are suggesting it (step 3).

While modifying the DPLL algorithm, we also introduced the notion of level-
history during search: old level and new level. Level old level is the number of assigned
variables the last time a round was executed, or the level we jumped back to due
to a conflict. Level new level is the number of assigned variables after the batch of

5.2. SECURITY ANALYSIS OF EPROBIP 69

CHAPTER 5. NOISY SECRET SHUFFLING

Function Multi-DPLL(to examine, old level, new level).This is a modified ver-
sion of the original DPLL algorithm’s propagation&conflict decision function.
In this function, both propagations and conflicts are voted for and only those
are executed which have enough votes. Propagations are kept in the ballot box
prop votes and are examined in batches, while conflicts are kept in the ballot
box confl votes and are immediately executed if the vote-count is high enough.

Input: to examine, old level, new level
Output: conflict variable, confl votes
repeat1

prop votes ←0;2

confl votes ←0;3

prop lim ← CalcPropLim(old level, new level);4

confl lim ← CalcConflLim(old level, new level);5

while size of to examine > 0 do6

var ←pop variable from to examine ;7

foreach clause that var is in do8

packet no ←the packet this clause belongs to;9

if clause makes propagation on var then AddVote(prop votes, var,10

sign, packet no);
if clause causes conflict due to var then11

AddVote(confl votes, var, packet no);12

if confl votes [var] > confl lim then return Conflict on var13

with votes confl votes [var];
end14

end15

end16

old level ←new level ;17

while size of prop votes > 0 do18

var, votes, sign ← pop from prop votes ;19

if votes >prop lim then20

Bound var to inferred sign ;21

Enqueue var in to examine ;22

new level ++;23

end24

end25

until old level < new level ;26

70 5.2. SECURITY ANALYSIS OF EPROBIP

CHAPTER 5. NOISY SECRET SHUFFLING

Table 5.1: The possible trade-offs in time and calculations for breaking the privacy
of the tag. The more packets the attacker can gather, the faster she can break the
privacy. The parameters used were L = 10, P robatt ≈ 0.9 and err = 0.1. Times are
calculated for a single-core Pentium D@3GHz. Patt refers to the minimum packets
needed to break the privacy of the EProbIP protocol.

No. of packets K = 100 K = 200 K = 400 K = 1000

1 · Patt 1.15e15 s 2.53e34 s 7.33e72 s 1.78e188 s
9 · Patt 1.47e6 s 3.16e14 s 1.47e31 s 1.47e82 s

27 · Patt 5.08e4 s 3.87e10 s 2.25e22 s 4.43e57 s
64 · Patt 2.94e4 s 1.77e10 s 6.45e21 s 3.10e56 s

192 · Patt 1.55e4 s 8.96e8 s 2.99e18 s 1.11e47 s
576 · Patt 1.80e4 s 6.29e6 s 7.72e11 s 1.43e27 s

propagations made or after randomly bounding a variable to either true or false.
These levels are needed to assist with the calculations in the functions CalcConflLim
and CalcPropLim. Since these functions are not central to the understanding of the
packet-intensive approach detailed here, they are only present in Appendix 5.A.

5.2.4 Resistance to attacks

The attack resistance of the EProbIP scheme for parameters L = 10, P robatt ≈
0.90, err = 0.1 is detailed in Table 5.1. The tests were performed on a Pentium
D@3GHz with 2GB of RAM. The number of tags, n, is not directly present anywhere
in the results since n only has an effect on P and therefore on identification speed
and on the ratio Patt/P . The results for the computationally-intensive approach are
presented in the first row of the table (i.e. 1 ∗Patt), the rest of the rows are the times
obtainable using the packet-intensive approach. This is because the computationally-
intensive approach’s performance degrades if more packets are given to it than
necessary.

The results show that there is a trade-off between the number of packets collected
and the hardness of breaking a tag’s privacy (i.e. winning the privacy experiment).
The more packets an attacker can collect, the easier it is for her to break the tag’s
privacy. This property is a direct result of the threshold phenomenon: as hypothesised
by Cheeseman et al. in [6] and further explained by B. Smith in [24], all NP-hard
problems exhibit a so-called phase-transition, which states that given a randomly
generated NP-hard constraint satisfaction problem (CSP), there is always a point
where it is the hardest to solve the generated problem, and this corresponds exactly
to the point where there is a transition from SAT to UNSAT. From this point on,
the difficulty of finding a solution decreases at an exponential rate, along with the
possibility of having any solution at all. In our case, the randomly generated CSP
may have an implanted solution (if TA = TC), so it may happen that it cannot
become UNSAT, but the threshold phenomenon still holds — it is simply more
difficult to observe, as it cannot be characterised by a simple transition from SAT to
UNSAT.

In order to limit packet extraction — thus forcing the attacker to do far more

5.2. SECURITY ANALYSIS OF EPROBIP 71

CHAPTER 5. NOISY SECRET SHUFFLING

calculations — a Time-Delay Scheduler (TDS) could be used. As explained by Van
Le et al. in [14] the TDS implements a throttling mechanism on the tag by using
small capacitors that power counters that must reach 0 before a new identification
session is allowed.

5.3 Conclusions

We have shown that it is possible to create a privacy-preserving identification scheme
for RFID tags that fits within the gate-count budget available on these low-power
devices. However, it is clear that such schemes are neither easy to create, nor do they
offer clear-cut security as other, more conservative designs, such as stream or block
ciphers do. For instance, using the suggested parameter sizes, it is possible to attack
the EProbIP protocol in about 7.72e11 s ≈ 270 operations if 576 · 267/20 ≈ 7000
identifications’ worth of packets are gathered by the attacker. Though extracting this
many packets can be made very hard through, for instance, a time delay scheduler,
the security of the scheme is not as clear-cut as standard crypto-primitives would
offer. However, this trade-off might be one that is useful to make for RFIDs: for
instance, if implementing standard crypto-primitives on the RFID would make it so
expensive that it would never be used by retailers, the security that EProbIP can
offer could be a worthwhile option to consider.

5.A Calculating propagation and conflict proba-

bilities for Function Multi-DPLL

The probability that a Noise-packet contains i number of variables that are bounded,
given that new level are bounded from K is

Pbound(i) =

(
new level

i

)(
K−new level

L−i

)
(

K
L

)
since the packet can be divided into two parts: one that is coming from the bounded
variables and the other part that is coming from the unbounded variables.

At each DPLL level, given the previous level (old level) and the current level
(new level) in the search tree, if there are i bounded variables in the random packet,
the chance that at least one is coming from the newly bounded variables and so the
packet will be investigated by the DPLL loop is:

Pnewlybound(i) =

(
old level

i

)
(

new level
i

)
Therefore, the probability that a variable will be propagated by a Noise-packet, and
that this packet will be investigated by the DPLL loop is

Pprop =
min(9,new level)∑
i=max(5,10−

(K−new level))

[
Pbound(i) ∗ Pnewlybound(i) ∗ 10− i

K − new level

]

72 5.3. CONCLUSIONS

CHAPTER 5. NOISY SECRET SHUFFLING

Similarly, the probability that a variable will cause a conflict by an Noise-packet,
and that this packet will be investigated by the DPLL loop is

Pconfl =
min(10,new level)∑

i=max(6,10−
(K−new level))

[
Pbound(i) ∗ Pnewlybound(i) ∗ i

new level

]

We will use the cumulative distribution function of the binomial distribution at
one standard deviation from the mean to calculate the limits. Therefore, since the
variance of the binomial distribution is σ2 = n ∗ p ∗ (1− p), we will use the formula

cumul = n ∗ p+
√
n ∗ p ∗ (1− p) .

The probability that a packet picked randomly will not conform to eq. (4.1)
is errr = err ∗ (1 − R) since a Noise-packet has a chance R that it will conform
to it (and Valid-packets all conform, by definition). We will thus use errr in our
calculations. Therefore, the number of packets that do not conform to eq. (4.1) is
taken to be almost sure to be below

errpack = (xA + xC) ∗ errr +
√

(xA + xC) ∗ errr ∗ (1− errr)

We can now calculate the number of votes needed to believe propagations/conflicts
given that we need good confidence that at most this many wrong votes will occur

CalcPropLim = errpack ∗ Pprop +
√
errpack ∗ Pprop ∗ (1− Pprop)

CalcConflLim = errpack ∗ Pconfl +
√
errpack ∗ Pconfl ∗ (1− Pconfl)

5.A. CALCULATING PROPAGATION AND CONFLICT PROBABILITIES FOR
FUNCTION MULTI-DPLL

73

CHAPTER 5. NOISY SECRET SHUFFLING

74 5.A. CALCULATING PROPAGATION AND CONFLICT PROBABILITIES FOR
FUNCTION MULTI-DPLL

Bibliography

[1] Bárasz, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. Breaking
LMAP. In Conference on RFID Security — RFIDSec’07 (Malaga, Spain, July
2007), pp. 69–78.

[2] Bárász, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. A. Passive
attack against the M2AP mutual authentication protocol for RFID tags. In
RFID 2007 — The First International EURASIP Workshop on RFID Technology
(September 2007).

[3] Blass, E.-O., Kurmus, A., Molva, R., Noubir, G., and Shikfa, A. The
Ff-Family of Protocols for RFID-Privacy and Authentication. In Workshop on
RFID Security — RFIDSec’09 (Leuven, Belgium, July 2009).

[4] Bolotnyy, L., and Robins, G. Physically unclonable function-based security
and privacy in RFID systems. In PerCom 2007 (March 2007), IEEE, pp. 211–
220.

[5] Castelluccia, C., and Soos, M. Secret shuffling: A novel approach to
RFID private identification. In RFIDSec’07 (July 2007), pp. 169–180.

[6] Cheeseman, P., Kanefsky, B., and Taylor, W. M. Where the really
hard problems are. In IJCAI-91 (1991), pp. 331–337.

[7] Daemen, J., and Rijmen, V. Rijndael/aes. In Encyclopedia of Cryptography
and Security, H. C. A. van Tilborg, Ed. Springer, 2005.

[8] Davis, M., and Putnam, H. A computing procedure for quantification theory.
J. ACM 7, 3 (1960), 201–215.

[9] EPCglobal. 13.56 MHz ISM band class 1 radio frequency identification tag
interface specification (2003). Tech. rep., Auto-ID cetner, MIT, February 2003.

[10] Hell, M., Johansson, T., and Meier, W. Grain — a stream cipher
for constrained environments. In Proceeding of the Workshop on RFID and
Lightweight Crypto (July 2005), pp. 114–125.

[11] Holcom, D., Burleson, W., and Fu., K. Initial SRAM state as a fingerprint
and source of true random numbers for RFID tags. In RFIDSec’07 (July 2007),
pp. 29–40.

75

BIBLIOGRAPHY

[12] Juels, A., and Weis, S. Defining Strong Privacy for RFID. In International
Conference on Pervasive Computing and Communications — PerCom 2007
(New York City, New York, USA, March 2007), IEEE, IEEE Computer Society
Press, pp. 342–347.

[13] Koutarou, M. O., Suzuki, K., and Kinoshita, S. Cryptographic approach
to ”privacy-friendly” tags. In RFID Privacy Workshop (MIT, Massachusetts,
USA, November 2003).

[14] Le, T. V., Burmester, M., and de Medeiros, B. Universally compos-
able and forward-secure RFID authentication and authenticated key exchange.
In Proceedings of the 2nd ACM symposium on Information, Computer and
Communications Security — ASIACCS’07 (New York, NY, USA, 2007), ACM,
pp. 242–252.

[15] Molnar, D., and Wagner, D. Privacy and security in library RFID:
issues, practices, and architectures. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security (New York, NY, USA,
2004), ACM Press, pp. 210–219.

[16] National Bureau of Standards. Data Encryption Standard, 1977.

[17] O’Donnell, C. W., Suh, G. E., and Devadas, S. PUF-based random
number generation. In MIT CSAIL CSG Technical Memo 481 (November 2004).

[18] Ohkubo, M., Suzuki, K., and Kinoshita, S. Efficient hash-chain based
RFID privacy protection scheme. In International Conference on Ubiquitous
Computing — Ubicomp 2004, Workshop Privacy: Current Status and Future
Directions (Nottingham, England, September 2004).

[19] Ouafi, K., and Phan, R. C.-W. Privacy of Recent RFID Authentication
Protocols. In Information Security Practice and Experience, 4th International
Conference, ISPEC 2008 (Berlin, 2008), Lecture Notes in Computer Science,
Springer, pp. 263–277.

[20] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J.,
and Ribagorda, A. LMAP: A real lightweight mutual authentication protocol
for low-cost RFID tags. In Proceedings of RFIDSec’06 (Graz, Austria, July
2006), Ecrypt.

[21] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J.,
and Ribagorda, A. M2AP: A minimalist mutual-authentication protocol for
low-cost RFID tags. In International Conference on Ubiquitous Intelligence and
Computing — UIC’06 (September 2006), vol. 4159 of LNCS, Springer-Verlag,
pp. 912–923.

[22] Pietro, R. D., and Molva, R. Information confinement, privacy, and
security in RFID systems. In Proceedings of the 12th European Symposium On
Research In Computer Security (September 2007), pp. 187–202.

[23] Schaefer, T. J. The complexity of satisfiability problems. In STOC’78 (1978),
pp. 216–226.

76 BIBLIOGRAPHY

BIBLIOGRAPHY

[24] Smith, B. The phase transition in constraint satisfaction problems: A CLoser
look at the mushy region. In ECAI’94 (1994).

[25] Soos, M. Analysing the Molva and Di Pietro Private RFID Authentication
Scheme. In Workshop on RFID Security — RFIDSec’08 (Budapest, Hungary,
July 2008).

[26] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik
13 (1969), 354–356.

[27] van Deursen, T., Mauw, S., and Radomirovic, S. Untraceability of RFID
protocols. In WISTP (2008), J. A. Onieva, D. Sauveron, S. Chaumette, D. Goll-
mann, and C. Markantonakis, Eds., vol. 5019 of Lecture Notes in Computer
Science, Springer, pp. 1–15.

BIBLIOGRAPHY 77

BIBLIOGRAPHY

78 BIBLIOGRAPHY

Part III

Stream ciphers in RFIDs

79

In the previous part of this thesis we have shown some RFID security protocols
that rely on non-standard crypto-primitives. The problem with these protocols is
that they require third-party analysis and often even a redesign to make them secure.
This can potentially take many years, but the problem of RFIDs is current and very
real. Thus, RFIDs need solutions that can solve the challenges they face now and
in the near future. To provide such a solution, standard crypto-primitives such as
stream ciphers could be used in RFIDs until sufficiently good ad-hoc protocols are
found to replace them.

Modern crypto-primitives have been analysed, designed, broken and re-designed
for half a century [49, 19, 55, 15, 10]. Therefore it seems a logical conclusion that
adapting standard crypto-primitives to the environment of RFIDs brings more security
than experimental protocols, at least for the foreseeable future. The NESSIE project,
and its successor, the European eSTREAM [56, 2] project’s hardware portfolio is one
such attempt at bringing standard crypto-primitives, more particularly, stream ciphers
to the RFID scene. Two of its Phase-3, latest-round candidates are Trivium [10]
and Grain [32], both of which have been designed to be implemented in hardware,
and both use an 80-bit key and subsequently aim at offering 80-bit security — the
security level universally agreed upon by RFID researchers to be adequate for the
security of RFID tags.

The goal of this part of the thesis is to further advance the field of low hardware-
complexity stream ciphers through proposing their use in two example RFID protocols
and through their examination using SAT solver-based techniques.

Organisation

This third part of the thesis is made up of two chapters: Chapter 6 deals with how
stream ciphers can be used in the context of RFID protocols, and Chapter 7 deals
with the SAT solver-based analysis of three stream ciphers for RFIDs.

81

82

Chapter 6

An example RFID security
protocol using low
hardware-complexity stream
ciphers

In this chapter, we describe low hardware-complexity stream ciphers, why they
are uniquely useful for RFIDs, and give two example protocols that use stream
ciphers to achieve privacy-preserving identification and authentication for RFIDs.
Low hardware-complexity stream ciphers are useful for RFIDs as they are generally
much easier to design such that they use less hardware resources than other crypto-
primitives such as block- or asymmetric ciphers. For this reason, there are many low
hardware-complexity stream ciphers available, many of which have stood the test of
time. An example set of tried and tested stream ciphers are the final candidates of the
eSTREAM project’s hardware portfolio: Trivium [10], Grain [32] and MICKEY [3].

Organisation

In Sect. 6.1 we first describe the general layout and design of low hardware-complexity
stream ciphers. Then, in Sect. 6.2 we describe two example security protocols for
RFIDs based on stream ciphers. Finally, Sect. 6.3 concludes this chapter.

6.1 Stream ciphers

A stream cipher is a symmetric cryptographic function that allows two parties to
communicate privately when they share a secret key. Stream ciphers produce a
stream of pseudorandom bits (the keystream) given a secret key and a public random
initialisation vector (IV). This keystream is XOR-ed with a message prior to sending
and again XOR-ed after receiving so that the message cannot be read while in transit.

Stream ciphers have two phases: an initialisation phase followed by a keystream
generation phase. During initialisation, key and IV are typically mixed to become
the initial state. During keystream generation, the internal state is updated while
the keystream is being generated.

83

CHAPTER 6. AN EXAMPLE RFID SECURITY PROTOCOL USING LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

6.2 Two stream cipher-based RFID protocols

Stream ciphers are ideal to use in the keytree-based RFID protocol, introduced
by Molnar and Wagner [48]. In the keytree protocol, tags are leafs in a tree, as
illustrated in Fig. 2.3 in Chapter 2. The original protocol offers both privacy-
preserving identification and mutual authentication.

In this section we present two different protocols based on the Molnar-Wagner
protocol. The first protocol is simple and more straightforward to use, but only
provides privacy-preserving identification for RFID tags. The second is somewhat
more complicated, offering both privacy-preserving identification and (optionally
mutual) authentication.

Both protocols’ security goal is 280, but this goal is only guaranteed if the protocols
are used in a typical RFID environment, where querying the tag large number of
times is impossible. From the security standpoint, we mean large number of times as
being more than 1 billion (≈ 230) times. Typical RFIDs are slow to compute stream
ciphers, therefore if we take an optimistic 0.1 s identification time, querying the tag
1 billion times in a continuous manner would take

109 · 0.1
60 · 60 · 24 · 365

≈ 3.17 years

which is overly time-consuming, and opening the tag for its secret would be far easier
to accomplish for an attacker.

6.2.1 A simplistic protocol

In this simplistic protocol, the original protocol is changed such that instead of
sending a nonce to be encoded, the reader sends an IV to be used, and asks for the
encoded ID from the tag. Thus, the protocol description changes to that present in
Fig. 6.1. Since stream ciphers do not act as Pseudo-Random Functions (PRFs), the
original protocol must be changed such that the tag does not reply with a mixture
of its key, nonces and ID, rather, it simply encodes its ID with its key and the
IV = IV1 ⊕ IV2, where IV1 is the nonce received from the reader, and IV2 is its own
nonce.

This protocol does not provide authentication like the original Molnar-Wagner
protocol. This is because a malicious tag could always set its own nonce, IV2 to
be old nonce⊕ IV1, where old nonce is an old, observed protocol’s nonce, and then
re-use the old, observed reply σ. For this reason, the adapted protocol only provides
privacy-preserving identification.

6.2.2 A more complex protocol

This more complex RFID protocol, based on stream ciphers and the Molnar-Wagner
protocol, offers both privacy-preserving identification and (optionally mutual) au-
thentication for the tags and readers. The difference between this protocol and the
previous, more simple protocol is essentially in the way the nonces (IV1 and IV2) of
the two entities are mixed. In the more simple protocol they were simply XOR-ed
with each other. This meant that a malicious tag could always control the final
outcome of the mixing operation. This is no longer made possible, as the combination

84 6.2. TWO STREAM CIPHER-BASED RFID PROTOCOLS

CHAPTER 6. AN EXAMPLE RFID SECURITY PROTOCOL USING LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Reader Rj Tag Ti

Generate nonce IV1

−→ IV1

Generate nonce IV2 and
calculate
σ = ID ⊕ cipher(k, IV1 ⊕ IV2)

←− IV2, σ
find (k, ID) ∈ L s.t.
ID = σ ⊕ cipher(k, IV1 ⊕ IV2)

Figure 6.1: A less powerful version of the Molnar-Wagner protocol, adapted to the
use of stream ciphers. This protocol only provides privacy-preserving identification.
L is the database of tags maintained by the RFID reader.

function has been replaced with the cipher function. The mixing is done as follows:
the first nonce IV1 is used as the key, and the second nonce IV2 is used as the IV.
The keystream of the cipher is then stored as M . This new M is then re-loaded into
the cipher as the IV and the key k is used to generate again a keystream that is then
used to mask the ID. This process is illustrated in Fig. 6.2.

6.3 Conclusions

In this chapter we have described the general layout of low hardware-complexity
stream ciphers, and have adopted the Molnar-Wagner keytree-based protocol to their
needs. Stream ciphers are uniquely suitable for RFIDs, as they have been researched
for a long time, and can be created such as to demand very little hardware resources,
essentially only requiring around twice the number of flip-flops than their security
rating — for example, the Grain cipher [32] only requires 160 flip-flops to function,
while providing 80-bit security.

6.3. CONCLUSIONS 85

CHAPTER 6. AN EXAMPLE RFID SECURITY PROTOCOL USING LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Reader Rj Tag Ti

Generate nonce IV1

−→ IV1

Generate nonce IV2 and
calculate
M = cipher(IV1, IV2)
σ = ID ⊕ cipher(k,M)

←− IV2, σ
calculate
M = cipher(IV1, IV2)

find (k, ID) ∈ L s.t.
ID = σ ⊕ cipher(k,M)

optional — only for mutual authentication

calculate
τ = ID ⊕ cipher(k,M ⊕ 1)

−→ τ

check τ
?
= ID ⊕ cipher(k,M ⊕ 1)

Figure 6.2: A more complex version of the Molnar-Wagner protocol adapted to stream
ciphers. This protocol provides privacy-preserving identification and (optionally
mutual) authentication. L is the database of tags maintained by the RFID reader.

86 6.3. CONCLUSIONS

Chapter 7

Using SAT solvers to analyse low
hardware-complexity stream
ciphers

Cryptographic functions are at the base of computer security with encryption ciphers
ensuring confidentiality and authenticity. Despite their importance, many practical
cryptographic functions rely on unproven assumptions about the complexity of
their underlying mathematical problems. When these assumptions are found to be
incorrect, new theoretical and practical attacks are constructed that sharpen the
understanding of a specific problem and advance the evolution of cryptography in
general. SAT solvers have been shown to be a powerful tool in testing mathematical
assumptions. In this chapter, we extend SAT solvers to better work in the environment
of cryptography.

In this chapter we analyse two stream ciphers used in RFIDs and a low hardware-
complexity stream cipher that is a close relative to a stream cipher targeted for
RFIDs. In order to achieve these goals we bring SAT solvers and stream ciphers closer
to each other by adapting both the solver to stream ciphers and the representation
of stream ciphers to SAT solvers. Previous work on solving cryptographic problems
with SAT solvers has concentrated on the best mathematical representation of
ciphers [43, 13, 4, 54, 24, 46]. To further improve the potential of SAT solvers, we
adapted a SAT solver to better suit cryptographic problems and then manipulated
the representation of some cryptographic problems to best fit this modified solver.
We refined SAT solvers to understand the XOR operation, which is common in
cryptography, besides functions in the conjunctive normal form (CNF) that is native
to many SAT solvers. We further added dynamic behaviour analysis to more
thoroughly understand the workings of SAT solvers on cryptographic primitives.

The first two stream ciphers analysed, Crypto-1 [18] and HiTag2 [51], are weak
stream ciphers, widely used in electronic payment, access control and car immobilisers.
The third cipher, Bivium B [53], is a simplified version of the eSTREAM standard
stream cipher Trivium [10] known for its simple description and hardware-oriented
design. As is customary [46, 24] for SAT solver-based analysis we will express our
results by comparing the estimated number of seconds to solve the ciphers on a
desktop computer before and after our improvements. Solving the above mentioned
ciphers with an unmodified MiniSat SAT solver and with only basic improvements

87

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

to their CNF representation reveals the secret on a desktop machinei state within
170 hours for Crypto-1, a week for HiTag2 and in 242.7 s [46] for Bivium B. With
our adapted SAT solver and tuned cipher description techniques, the average attack
time using SAT solver-based techniques on a desktop PC drops to 40 seconds for
Crypto-1, 6.5 hours for HiTag2 and 236.5 s for Bivium B.

Until now, our techniques give the best SAT solver-based attack time for the
above mentioned ciphers. For Crypto-1 there exists an algebraic attack by Garcia et
al. [28] that solves for the key by inverting the filter function to arrive at approx. 216

candidate keys, which takes only approx. O(226) operations to break, which is only
a fraction of a second to carry out on a desktop computer.

Organisation

We first introduce the problem domains’ state-of-the-art in Sect. 7.1. We then
optimise a standard SAT solver for cryptographic problems in Sect. 7.2. The SAT
solver now handles XOR operations natively to faster solve cryptographic problems
and the solver’s execution is visualised to allow insight into its inner workings.
Based on these improvements, guidelines are derived on how to convert ciphers to a
description that can be quickly solved in Sect. 7.3. Finally, three ciphers are solved
using the adapted SAT solver faster than was previously possible with other SAT
solver-based techniques, in Sect. 7.4.

7.1 Background

Our results build on research in stream ciphers, SAT solvers, and algebraic crypt-
analysis. In this section, we present the current state of research in SAT solvers,
algebraic cryptanalysis and stream ciphers.

7.1.1 SAT solvers

Satisfiability solvers are programs that employ highly optimised mathematical algo-
rithms to decide whether a formula has a solution. In this chapter we concentrate
on one widely-used formula description, the clausal normal form (CNF). The CNF
formula ϕ on n binary variables v1, . . . , vn, is a conjunction (and-ing) of m clauses
ω1, . . . , ωm each of which is the disjunction (or-ing) of literals, where a literal is
the occurrence of a variable e.g. v1 or its complement, ¬v1. Any formula can be
transformed to CNF by introducing new variables to label the subformulas. A
formula can be converted to clausal form by introducing fresh variables for each
compound subformula and adding suitable clauses, e.g. in converting ¬p ∨ (¬q ∧ r),

iIntel Xeon E5345@2.33GHz, 4MB cache, 4GB memory, using one core

88 7.1. BACKGROUND

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

we label ¬q ∧ r as b and ¬p ∨ b as a to obtain the clauses

a

a ∨ p
a ∨ ¬b

¬a ∨ ¬p ∨ b

¬p ∨ b⇔ a

b

b ∨ q ∨ ¬r
¬b ∨ ¬q
¬b ∨ r

¬q ∧ r ⇔ b

When transforming a given function to CNF, the best known way is the Karnaugh-
map method [35]. However, there is a multitude of ways, which are further elaborated
upon in Sect. 7.3.4.

SAT solvers are mostly used in electronic design automation (EDA), though
they are also used in a growing number of other domains. State-of-the-art solvers
have been extended or adopted to meet the specific characteristics of different
problem domains, for example temporal induction in [23], ontology matching [29]
and knowledge compilation [17].

The basic DPLL algorithm

In this chapter we concentrate on SAT solvers that are based on the DPLL algo-
rithm [16]. The DPLL-algorithm is a depth-first search algorithm to find a satisfying
variable assignment to the formula ϕ in CNF. The algorithm recursively chooses a
variable, assigns a truth value to it, simplifies the formula, and if the new formula
ϕ′ is satisfiable, the original formula was satisfiable. If the simplified formula is not
satisfiable, it goes back, assigns the opposite truth value to the variable, simplifies
the formula, and if this new formula ϕ′′ is satisfiable, the original formula was
satisfiable. However, if even this second attempt fails, then the original formula was
also unsatisfiable. This method is known as the splitting rule.

Clauses that contain at least one literal assigned to true are satisfied, therefore
they are removed from the problem set and are not treated by the DPLL algorithm.
For the remaining clauses, the DPLL algorithm uses the unit clause and empty clause
rules for formula simplification. Clauses that do not contain any unassigned literals
are called empty clauses. A formula that contains such a clause is unsatisfiable.
If such an event occurs, it is called a conflict. Clauses that contain exactly one
unassigned literal are called unit clauses. These clauses assign a variable to false if
the unassigned literal is negated and to true if the literal is non-negated. If such a
variable assignment occurs, it is called a propagation.

A description of the recursive DPLL algorithm is in Function DPLL. The function
takes formula ϕ as a parameter and returns either SAT or UNSAT. The algorithm
starts by making all possible propagations, then checks for empty clauses. If one
or more are found, it returns UNSAT. Otherwise, it checks if there are any clauses
remaining that have unassigned literals. If so, it assigns an unassigned variable to
true, and recursively calls itself. If the function call returns UNSAT, it tries to
assign false to the same variable, and again recursively calls itself. If the function
call again returns UNSAT, then the original ϕ formula must have been unsatisfiable.

7.1. BACKGROUND 89

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

If at least one of the function calls have returned SAT, all clauses must have been
satisfied in either one or the other part of the split, and the DPLL function returns
SAT. It is easy to verify that the algorithm is complete: it always terminates as
there is only a finite number of variables that can be branched upon.

Function DPLL(ϕ) The basic DPLL algorithm. The algorithm first makes all
possible propagations, then checks if there are any conflicts. If all clauses are
satisfied, it returns SAT. If some clauses are still unsatisfied, it tries to branch
on a variable by assigning it first one value then to the other, recursively calling
itself. If both branches returned with UNSAT, the function returns with UNSAT

Input: Clausal Normal Form formula ϕ
Output: SAT or UNSAT
foreach unit clause ω in ϕ do1

assign var in clause to satisfy it;2

end3

if ϕ contains an empty clause then4

return UNSAT;5

end6

if there are unsatisfied clauses then7

Take unassigned variable var ;8

var ← true;9

if DPLL(ϕ′) 6= SAT then10

var ← false;11

if DPLL(ϕ′′) 6= SAT then12

// Neither branch is satisfiable

return UNSAT;13

end14

end15

end16

// All clauses are satisfied

return SAT;17

Improvements over the original DPLL scheme

The first major improvement over the standard DPLL algorithm was by Silva
and Sakallah [57] who introduced conflict analysis which allows non-chronological
backtracking and learning. In the paper, the authors describe GRASP, a SAT solver
that records all propagations made and if a conflict arises, builds an implication graph
to determine which decisions contributed to the conflict. The solver then generates a
conflict-induced clause, or learnt clause for each conflict, and adds this new clause
into the database. The authors observe that using such a technique, the generated
learnt clause can lead to non-chronological backtracking, that is, backtracking to a
level lower than the level just below the current level. To overcome the problem of
too many learnt clauses, the authors suggest to use a heuristic to keep only a certain
set of learnt clauses. Finally, the authors propose an algorithm to more carefully
analyse the implication graph through Unique Implication Points thereby reducing

90 7.1. BACKGROUND

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

the size of the generated learnt clauses.

The second major improvement over the original scheme is by Gomes et al. [30],
who introduced random restarts. Observing the runtime distribution of DPLL-based
backtrack search methods on a variety of problem instances, they found that these
are often characterised by very long tails or “heavy tails” [42]. They then used
heavy-tailed distributions to provide a formal framework explaining the large variance
and the erratic behaviour of the mean of backtrack search and proposed the solution
of randomly restarting the solver to effectively eliminate this behaviour. Using
rapid restarts improved the performance of SAT solvers by two orders of magnitude,
thereby significantly reducing running times.

The most recent major improvement over the original DPLL algorithm is that by
Malik et al. [41] who introduced the solver Chaff. Chaff’s innovations are its method
of watched literals to effectively monitor clauses for variable changes and its Variable
State Independent Decaying Sum (VSID) variable decision heuristic.

The method of watched literals effectively eliminates looking through all clauses
for propagations and conflicts by watching for changes exactly two literals in every
clause. If a clause is only one-long it automatically causes a propagation and the
DPLL does not need to treat it. The remaining clauses thus all have at least two
literals, two of which are always watched. Since propagation needs exactly one
unassigned literal, if propagation is to be made by a clause, it must have at least one
literal assigned false and so is detected. Since conflict needs all literals assigned
false, it too is detected. If a watched literal is assigned false, all clauses in which
the literal is watched is investigated for propagation or conflict. If neither a conflict
or a propagation occurs in a clause, then the clause must have at least two unassigned
literals, one of which is added to the watch-list. This way, all propagations and
conflicts are detected by watching only two literals in all clauses.

The Variable State Independent Decaying Sum (VSID) method of selecting
decision variables essentially uses the learnt clauses to guide the solver towards the
most important variables, using randomness to look through as-yet undiscovered
areas of the search space.

MiniSat

MiniSat by Eén and Sörensson [22] is a prime example of modern DPLL-based SAT
solvers. It employs all the previously detailed techniques in one well-documented
package. MiniSat’s primary advantage is its design simplicity: it is well built and well-
implemented, using data structures that optimise cache and memory use. MiniSat is
also specifically made to be extended: its source code is freely available under the
MIT licence, a strictly more permissive licence than the GPL or the LGPL licences.

Many have taken advantage of the extensibility of MiniSat to enhance it in multiple
ways. MiniMarch, by Wieringa et al. [62] adds branch direction heuristics and some
extra logic to make the solver less sensitive to input formula shuffling. MidiSat by
Kibria [36] adds a new binary clause representation method and equivalent variable
detection to the solver. Finally, MiniMaxSat by Heras et al. [33] is a completely
re-designed variation of MiniSat that solves weighted Max-SAT problems.

7.1. BACKGROUND 91

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

7.1.2 Algebraic Cryptanalysis

Algebraic cryptanalysis [5] is a family of attacks that can be loosely grouped according
to their technique of converting the original problem into polynomial systems of
equations, which are then solved using systems such as SINGULAR [31], MAGMA [9],
or SAGE [60]. These systems employ a wide range of algorithms to resolve the
systems of polynomials, among them algorithms such as the F4 [26] and F5 [27]
algorithms by Faugère, or standard SAT solvers such as MiniSat [22] using the
conversion method by Bard et al. [6].

Algebraic cryptanalysis have successfully been applied to break a number of
ciphers secure against other forms of cryptanalysis. The first SAT solver-based
algebraic cryptanalysis was by Massacci et al. [44], experimenting with the Data
Encryption Standard (DES) using DPLL-based SAT solvers. More recent work
by Courtois and Bard has produced attacks against KeeLoq [11, 4], DES [13] and
stream ciphers with linear feedback [12]. Algebraic cryptanalysis has also been used
on modern stream ciphers, such as the reduced version of Trivium, Bivium A and
Bivium B [53].

7.1.3 Stream Ciphers

A general description of low-complexity stream ciphers can be found in the previous
chapter, in Sect. 6.1. In this chapter, we restrict ourselves to stream ciphers that are
based on one or more shift registers with a linear or non-linear feedback function
as well as a filter function that maps the shift register states to a keystream bit.
In these stream ciphers, the keystream is generated by clocking the shift registers
(updating their content) and mapping the new state to a new keystream bit. An
example cipher using this process is illustrated in Fig. 7.1.

Some ciphers fall into the category of stream ciphers that has been detailed in Fig.
7.1 but have their registers irregularly clocked. Such a cipher is the A5/1 cipher [1]
(used in mobile phones), where the irregular clocking is used to introduce non-linearity.
Such ciphers are very complicated to model using SAT solvers thus making their
solving slow using SAT solver-based techniques. For this reason, irregularly clocked
stream ciphers are not discussed in this chapter.

7.2 Adapting the SAT solver

To take full advantage of the power of SAT solving we adapted and optimised MiniSat,
a state-of-the-art DPLL-based SAT solver, for algebraic cryptanalysis. We further
added visualisation to the solver to help identify bottlenecks and improve the solving
by altering the problem representation. Among the many choices for modern SAT
solvers, we chose MiniSat for its competitive performance, code availability, and a
design that specifically encourages extensions to its input language.

7.2.1 Full pre-simplification

Clause pre-simplification is an algorithm that activates itself inside MiniSat when a
direct variable assignment is either given through the input file, or is found through

92 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Figure 7.1: Illustration of the keystream generation process of an example stream
cipher that uses two shift registers and the process of updating its state with
feedback functions and generating the keystream using filter functions. Functions
are illustrated in rounded boxes and shift registers in sharped-edged boxes. The two
feedback functions can be different for the two shift registers, and the size of the shift
registers can also vary. The input of the feedback functions may also vary and may
not only come from register it is updating. Typically, there is only one keystream bit
generated per cycle, though with modern ciphers, higher throughput can usually be
achieved by multiplying the number of feedback and filter functions, updating the
state of the shift registers in groups of 2,3, etc. bits, generating 2,3, etc. keystream
bits per cycle.

7.2. ADAPTING THE SAT SOLVER 93

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

learning. Such a direct variable assignment, expressed as a single-literal clause, has
the form “a” or “¬a”. Such a single-literal clause assigns the variable to either true
or false. This assignment can then be propagated through the clauses before any
dynamic behaviour (i.e., branching, learning, etc.) of the solver. If through such an
assignment a literal in a clause becomes true, MiniSat automatically removes that
clause form the watched clause list. Also, if such assignments cause propagations,
these propagations are automatically made and the propagating clause is again
removed from the watched clause list.

However, if through such an assignment a literal in a clause becomes false, the
literal is left inside the clause. Neither the source code nor the research paper on
MiniSat [22] documents why this omission was made, and we can only speculate that
the designers simply overlooked it. Since the false literals are left inside the clauses,
they must be examined for change (in vain) during the execution of the solver, which
unnecessarily slows down the solver.

We implemented into MiniSat a function that removes false literals from clauses.
The fixed overhead from this full pre-simplification technique is more than compen-
sated for by the faster solving if the function is only called at the beginning of the
search and once after every 3-4 restarts. The observable overall speedup using this
technique depends on the number of false literals, and can range from unobservable
to 1.5x for specific cases such as a large number of internal state bits given as unit
clauses to help solve a stream cipher.

7.2.2 XOR support

Cryptographic building blocks such as filter and feedback functions lead to equations
with many XORs. These XOR constraints, when converted to CNF representation
without further elaboration, grow exponentially in size. This is because an n-long
XOR constraint’s Karnaugh table contains 2n−1 minterms, and hence needs 2len−1

clauses to describe in CNF.

Previous work

Previous research extended the Satz solver to reason about 2- and 3-long XOR
constraints, which its authors called equivalency reasoning [39]. Research has also
been conducted on using XORs as a black-box part of the search [40], but apart from
a will to implement such a construction by Massacci [7, Sect. 9], as of yet, there is
no published successful native implementation of the XOR function in SAT solvers.
Current techniques therefore focus on circumventing the exponential explosion of
XORs when converted to CNF, by cutting up the XOR function [4, Sect. 6.4] into
groups of smaller XORs, each setting an additional variable. The full XOR is then
represented as a XOR of the additional variables. While cutting up XORs allows
MiniSat to work on long XOR chains, this approach forces the solver to watch and
examine many clauses for variable changes, when in fact only one XOR constraint
should be watched.

94 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Our approach

To mitigate this limitation, we implemented the XOR constraint natively into MiniSat.
Each XOR constraint is represented by a single xor-clause ii. A xor-clause behaves as
a regular clause towards all unchanged parts of the solver: it dynamically changes
appearance when propagating or causing a conflict by appearing as a different regular
clause depending on the current assignment of variables.

For example, the xor-clause

a⊕ b⊕ c
represents all the regular clauses

a ∨ ¬b ∨ ¬c (1) ¬a ∨ ¬b ∨ c (2)
a ∨ b ∨ c (3) ¬a ∨ b ∨ ¬c (4)

and if, for example a = true and b = true, then it changes its appearance to
the regular clause (2), and causes the propagation c = true just as its regular
representation would. If, however, a = false, b = true and c = true, the xor-clause
changes its appearance to regular clause (1) and causes a conflict just as its regular
representation would.

Generating a conflicting or propagating clause from a xor-clause is done as follows.
All variables that are assigned to false are included as-is, and all variables that
are assigned to true are included in a negated form. If propagating, the single
unassigned variable is also included, its negation depending on the values of the
other variables in the xor-clause.

Pseudo-code for XOR support in MiniSat

The pseudo-code for xor-propagation and xor-conflict generation in MiniSat is
presented in Function xor-DPLL. The queue to examine contains all the variables
that were assigned recently. A variable var is popped from this queue and is examined
whether it causes any propagations or conflicts. The technique of watched literals
(first used in Chaff [41]) is used by xor-clauses. In the case of xor-clauses however,
since they are never satisfied by a single true literal, variables are watched instead
of literals. This entails managing a separate variable watch-list for xor-clauses.
Although this produces some overhead, one must take into account that if the xor-
clause was converted to 2n−1 regular clauses, then the number of watched literals for
a single xor-clause would be 2n — a far greater number than the two necessary with
the new solution.

Since watchlists (see Sect. 7.1.1 on watchlists) are different for xor- and regular
clauses, they cannot be examined in a mixed fashion. The order, however, does make
a difference. In our implementation, the regular clauses are examined first by the
regular DPLL function. If they cause any propagations, the requested assignments
are carried out. If they cause a conflict, the DPLL function returns a non-null clause
which in turn is returned by the xor-DPLL function. Only after the regular clauses
have been examined does the algorithm examine the xor-clauses. The order regular-
then-xor is preferred as xor-clauses are usually more difficult to examine and it helps
to have all possible information (i.e. assignments by the regular clauses) at hand
before executing the relatively expensive xor-clause examination procedure.

iiThis is the same name as given by Massacci [7] to such clauses

7.2. ADAPTING THE SAT SOLVER 95

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Function xor-DPLL(to examine). The function is an extension of the original
DPLL function to handle xor-clauses in a manner that hides the complexity
from the rest of the SAT solver. Between lines 5.-5. the function iterates
through all the xor-clauses that the currently investigated variable, var, could
potentially affect. If var causes a propagation (line 5.), the propagated variable
is assigned and the xor-clause takes on the form of the clause that would have
caused this propagation had each and every 2n−1 clause been inserted into the
solver. If var causes a conflict (line 5.), the xor-clause takes on the form of the
regular clause that would have generated this conflict, and returns this clause.
If the assignment of the variable var did not cause either a propagation or a
conflict (line 5.), a new variable is set to be watched in the xor-clause, just like
with regular clauses.

Input: to examine
Output: Conflict clause
while size(to examine)> 0 do1

var ←pop variable from to examine ;2

clause ←DPLL(var);3

if clause ! = null then return clause ;4

foreach xor-clause that var is watched in do5

if xor-clause makes propagation on var then6

Bound var to propagated value;7

Enqueue var in to examine ;8

xor-clause ←Regular clause from xor(xor-clause);9

else10

if xor-clause causes conflict then11

xor-clause ←Regular clause from xor(xor-clause);12

return xor-clause ;13

else14

Find new unassigned variable to be watched in xor-clause ;15

end16

end17

end18

end19

return NULL;20

96 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Results

Solving cryptographic functions is accelerated considerably by integrating xor-clauses
into MiniSat. For the stream ciphers Crypto-1 and Grain solving is up to twice as fast
with xor-clauses and memory usage is decreased by at least an order of magnitude.
Besides speeding up the solving, native XOR support leads to more concise input
file and internal data structures, which simplify analysing the dynamic behaviour of
the solver. Lastly, xor-clauses enable a straightforward implementation of Gaussian
elimination into MiniSat as explained in the next section.

7.2.3 Gaussian elimination

Gaussian elimination is an efficient algorithm for solving systems of linear equations.
Since each xor-clause is a linear equation, we can use this algorithm to solve the
system of equations described by the xor-clauses. Some linear problems with as
many as 100 variables can be trivially solved with Gaussian elimination but take an
excessive amount of time when solved with SAT solvers. This phenomenon is due
to the fact that SAT solvers solve by guessing variables and determining if there is
any equation that gives a result given the current assignments. If the set of linear
equations is dense (i.e. all equations contain many variables), almost all variables
need to be guessed before any equation gives a result. Thus, for a system with
100 variables, it is not uncommon that 80 variables need to be guessed before any
equation gives a result, i.e. the search space is on the order of 280. When using
Gaussian elimination, on the other hand, the same problem can be solved in less
than 220 operations.

Previous work

Including Gaussian elimination into MiniSat is part of the general move towards SAT
Modulo Theories (SMT). A tutorial by Moura et al. [38] is a good introduction to
SMT. Essentially, an SMT instance is a generalisation of a Boolean SAT instance in
which various sets of variables are replaced by predicates from a variety of underlying
theories. SMT formulas provide much richer modelling language than is possible
with Boolean SAT formulas. Such richer modelling language includes, but is not
limited to equivalence, congruence closure, difference arithmetic, linear arithmetic,
and a combination of these. Xor-clauses allow linear arithmetic which Gaussian
elimination can understand and reason about, tightly integrating its conclusions into
the DPLL algorithm of MiniSat.

Implementation of the Gaussian elimination as a black-box subroutine into the
DPLL algorithm has been done many times before, for example in [40, 61]. These
methods pay off when the affine logic portion is overwhelming, for example in the bit
parity problem, but are ineffective if the affine logic part is just a small part of the
original formula. However, this latter is the case for many problem domains, such as
model checking [40] and when encoding cryptographic ciphers. For example, in the
encoding of DES, XOR-s make up only 4% of the original problem [43]. To overcome
this difficulty, Massacci has proposed a calculus with affine-logic reasoning in [7],
which essentially ports the Gaussian elimination procedure to the world of DPLL-
based SAT-solving, but left the implementation as future work. Our implementation

7.2. ADAPTING THE SAT SOLVER 97

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

can be thought of as specific instantiation of this calculus.

Our approach

To benefit from Gaussian elimination during solving, whenever the SAT solver
cannot perform any further propagations and would need to guess (i.e. branch on)
a variable, the Gaussian elimination routine is asked if there is any information it
could extract from the xor-clauses. If the Gaussian elimination finds a combination
of the xor-clauses that is a unit or empty under the current assignments, then this
combination of xor-clauses is treated as if it was a new xor-clause. The new xor-clause
is transformed into a regular clause (as described in Sect. 7.2.2), and produces a
propagation or a conflict. Therefore, the extracted new clause takes part in building
the implication graph and analysing conflicts.

It is possible that the Gaussian elimination gives more than one result, or that
the results are special, e.g. a xor-clause that is 1- or 0-long. The following list of
rules are applied in a top-down fashion to deal with the results of the Gaussian
elimination routine:

1. A 0-length non-inverted xor-clause is found. Such a xor-clause, a combination
of the xor-clauses originally in the system, is unsatisfiable under any variable
assignment, and thus the original system must be unsatisfiable. The solver
outputs UNSAT and stops.

2. A 1-length xor-clause is found. Such a xor-clause indicates an unconditional
variable assignment, which must be done at the beginning of the search tree.
All assignments are reverted until depth 0, the indicated propagation is made,
and the algorithm starts again.

3. One or more empty xor-clauses are found. The conflict analyser expects that
during solving, the first moment that a conflict can be found, it is found.
However, Gaussian elimination is not called at every variable-assignment (see
parameter d below) and so conflicts are not found as early as would otherwise
be possible. To circumvent this limitation, the conflict-level, the highest
assumption level of all variables in the xor-clause is calculated for all xor-
clauses, and the xor-clause is picked that has the lowest such level. Then,
all variable assumptions are reverted until the conflict-level of the selected
xor-clause. Only then is the conflict analyser given the selected xor-clause to
generate the learnt clause.

4. One or more unit xor-clauses are found. All propagations indicated by the unit
xor-clauses are made. Note that rules dealing with empty clauses are above
this rule, since if a conflict is found, it is of no benefit to propagate variables,
as the current branch is necessary wrong. Further examination of the current
branch would therefore be unnecessary.

In cases (3) and (4) the solver needs the xor-clause, which when evaluated with
the variable assignments, gives the empty or unit clause, respectively. Calculating
this xor-clause is important, as it signals the solver what variable was propagated by
what clause (in case of a propagation), or what clause caused the conflict (in case
of a conflict). Without the calculation of this xor-clause, the results obtained from

98 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Gaussian elimination could not take part in conflict analysis and thus would not be
fully integrated into the DPLL algorithm.

To calculate the empty/unit xor-clauses and the xor-clauses that evaluate to
the empty/unit xor-clauses, the implementation keeps two matrixes at all times.
The matrixes’ rows represent xor-clauses and all but their last column represent
variables, the last column being reserved for the traditional augmented column used
in Gaussian elimination. Both matrixes are initially loaded with the same xor-clauses
and the same augmented column storing the inversion of the xor-clause. The assigned
matrix, or A-matrix is updated with the current assignments, which simplifies the
task of evaluating whether a combination of xor-clauses is unit or empty. This is the
matrix the Gaussian elimination routine treats. The non-assigned or N-matrix is
not updated with the current assignments, and only mirrors the A-matrix with its
row-swap and row-xor operations. Having two matrixes allows the xor-clause to be
read from the N-matrix, and its assigned form to be read from the A-matrix. For
example, if the two matrixes are:

A-matrix
with v8 assigned to true

v10 v8 v9 v12 aug
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0

N-matrix

v10 v8 v9 v12 aug
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1

then the second to last row of the A-matrix indicates propagation of v12 = false.
The xor-clause can be read from the N-matrix: it is v8 ⊕ v12 ⊕ 1. The A-matrix,
used by the Gaussian elimination algorithm, is upper triangular, but the N-matrix is
only upper triangular for the columns representing variables that are not assigned.

Tweaks to the Gaussian elimination

Linear algebra and Gaussian elimination in particular have large literature on possible
optimisations. Our problem, however, is somewhat special, as we need to optimise for
solving similar matrices, that are updated only minimally, many times. Furthermore,
we need to keep not one, but two matrixes at all times, thus certain optimisations
only apply to one of the two matrixes. These challenges make our problem somewhat
different from that covered by currently existing implementations of the Gaussian
elimination algorithm, requiring solutions adapted to our specific needs.

Since the sum of variables in all the xor-clauses is in general much larger than the
average length of any given xor-clause, most of the matrix will be filled with zeros at
the beginning of the search. To keep this advantageous property of sparseness during
the run of the algorithm, we need to adopt to our needs the well-known optimisation
of choosing the pivot during Gaussian elimination [34]. Choosing the best row and
column on which to pivot during Gaussian elimination can keep the density of the
matrix low for a longer amount of time. The resulting lower density helps, as is
lowers the total number of row-xor operations as there are less ’1’-s in the matrix
that need to be eliminated by xor-ing with another row. Since we have two matrixes,

7.2. ADAPTING THE SAT SOLVER 99

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

we have the choice to minimise the density in the A- or the N-matrix, but we can
optimise for only one, and so a choice must be made:

• The advantage of keeping the A-matrix sparse is that less back-substitution is
needed to find a propagating or conflicting row, as the probability of rows that
only contain one or no ’1’-s in them after the Gaussian elimination is increased.
This advantage is specific to our case, as normally back-substitution is used to
eliminate such remaining ’1’-s, but this is less of a concern since making the
matrix upper triangular is usually the most difficult part. For us, the matrix is
small, therefore the time taken for back-substitution is also significant.

• The advantage of keeping the N-matrix sparse is that with a more sparse
N-matrix, the generated xor-clauses are on average smaller. It follows that the
conflict analysis routine has to work less and the generated learnt clauses are
smaller.

With simulations we have found that it is best to optimise for the sparsity of the
A-matrix to reduce the amount of time taken for back-substitution.

To save time, the A-matrix is incrementally normalised as the solver travels down
the search tree and assignments are made. We save both matrixes at every d-th
search depth, and in case the solver has to jump back (due to a conflict), we re-load
the matrixes from the state saved at that (or, if unavailable, somewhat earlier) depth.
Saving at every depth point (i.e. d = 1) requires many matrix savings, but the
A-matrix has to be updated only with the assignments at the current depth, and so
the Gaussian elimination has to be done on a matrix with a small delta. On the other
hand, saving at comparatively far depth points (i.e. d � 1) requires less savings,
but the A-matrix has to be updated with, on average, d/2 + 1 levels’ assignments,
and the Gaussian elimination has to normalise a matrix with a large delta. We have
found that saving at every d = 2-nd search depth is a good trade-off between having
too many matrix-saves and too large matrix updates and thus working on matrixes
with large deltas.

To further save time during Gaussian elimination, we keep record of the last
’1’ in the A-matrix for each column. When the A-matrix has to be incrementally
Gauss-eliminated, we only look for candidate pivot rows in that column until the
indicated row. This optimisation reduces the search time for the next pivot, and
only requires a very small list of numbers to be stored along with the A-matrix.

A trade-off parameter for the Gaussian elimination is the cut-off depth until which
it is worthwhile to execute the algorithm. Cutting off branches at the top reduces
the search space more than cutting at the bottom, but it takes approximately the
same time to execute the algorithm. However, if the cut-off depth is too shallow, the
constant overhead is more than the benefit, but if too deep, the dynamic overhead is
more than the benefit. In the end, we made the cut-off depth configurable, and ran
tests to decide for each cipher which depth gave the most benefit.

Results

Using Gaussian elimination, solving Crypto-1, HiTag2 and Bivium B is faster by
1–5% if we restrict the search depth to 2–3, depending on the number of guessed
bits. The results detailing the speedups are present in Table 7.1. For other instances

100 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Table 7.1: The table shows the speedups achievable with the Gaussian elimination
for different stream ciphers and for different maximum search levels. Each cipher
was executed 500 times with randomly picked and randomly set help bits (see Sect.
7.4.1 on details). All times in the table are the sum of time it took to execute the
solver 500 times. For Bivium B, 177 keystream bits were given. For both Crypto-1
and HiTag2, 56 keystream bits were given. All calculations were carried out on a
laptop-class computer.

No.
help bits

Gaussian elimination active until level

Inactive 2 3 4

Crypto-1 12 26.95 s 25.76 s 26.54 s 27.70 s
HiTag2 18 34.83 s 33.85 s 29.47 s 38.50 s
Bivium B 60 174.02 s 165.12 s 171.14 s 176.05 s

300

600

900

1200

1500

0 3 6 9 12 15 18

T
im

e(
s)

Gaussian elimination active
until depth

0

4e+8

8e+8

1.2e+9

1.6e+9

0 3 6 9 12 15 18N
o.

of
p
ro

p
ag

at
io

n
s

(∼
ex

p
lo

re
d

se
ar

ch
sp

ac
e)

Gaussian elimination active
until depth

Figure 7.2: Comparison between the time and the number of propagations (∼explored
search space), relative to the depth until which the Gaussian elimination was active.
Each point in the graphs represent 2000 random examples of the Bivium B cipher,
given 56 randomly guessed state bits

derived from other ciphers, Gaussian elimination does not appear to decrease the
overall solving time. A comparative figure for Bivium B, showing the speed of solving
and the explored search space versus the depth until which the algorithm was active
is present in Fig. 7.2. It is apparent from the graphs that using Gaussian elimination
reduces the explored search space (in the example, by up to 83%), but the algorithm
takes more and more time to execute as the cut-off depth is increased.

Apart from the marginal speedup that Gaussian elimination brings for certain
cipher instances, it is a useful tool for multiple other reasons. First of all, it
demonstrates that SAT solvers ignore certain characteristics of the problem they are
dealing with, and by exploiting these properties the search space could be significantly
reduced. Secondly, the combined solver works much faster on problems that have
large parts that can benefit from Gaussian elimination. A trivial example of such
a problem is for example a SAT problem that encodes a dense linear problem,
mentioned at the introduction to Gaussian elimination. Lastly, our implementation
of Gaussian elimination can likely be improved upon leading to greater speedups.

7.2. ADAPTING THE SAT SOLVER 101

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

7.2.4 Dynamic behaviour analysis

The dynamic behaviour of SAT solvers is hard to follow since branching and propa-
gation occur far too many times to be traceable by hand. Understanding the solver’s
dynamic behaviour, however, is essential for estimating a cipher’s complexity and
for improving the solver’s performance. To better understand how MiniSat reaches
solutions, we implemented search tree tracing into the solver. The output of our
MiniSat trace extension can be analysed visually and statistically.

Visual dynamic behaviour analysis

Visualising the operation of DPLL-based SAT solvers was introduced by Sinz [58].
In [58] the author introduced DPvis, a tool separately detailed in [59], to visualise
the structure of SAT instances and runs of the DPLL procedure. Although the DPvis
tool has multiple interesting features, such as manual intervention during the solving
and an interface to MiniSat, we have found it to lack two features that are useful to
analyse the solving of cryptographic functions.

Firstly, since DPvis was designed to examine general SAT problems for hidden
structures, it is not well-suited to analyse problems arising from cryptographic
functions, as these problems have a structure that is known, which does not need to
be discovered. Instead, this known structure must be integrated into the way the
search graph is plotted. Secondly, since DPvis shows the DPLL instance step-by-step,
thereby having to use a placement algorithm that is efficient enough to plot the
graph step-by-step. We, on the other hand, wished to plot the search graph of a
whole restart, and therefore were interested in an algorithm that plots a search graph
using more demanding algorithms that produced a better final graph placement.

To overcome these shortcomings of DPvis, we implemented into MiniSat a dynamic
search-tree description generator which can be visualised using the Graphviz [25]
software tool. Our extension to MiniSat allows for variables to be named and for
clauses to be grouped and named, which is useful when multiple clauses are used to
represent one logical entity (e.g. a feedback function). An example search tree of the
Crypto-1 cipher is in Fig. 7.3. The visualisation allowed us, for instance, to identify
the regularly placed filter function taps of Crypto-1 as its largest weakness over an
improved variant found in HiTag2 tags.

Statistical dynamic behaviour analysis

During solving, the following statistics are calculated for each restart of the solver:

• Search tree statistics. These include the number of branches visited, the
average branch depth, the number of decisions per branches and the number
of propagations per branches.

• Clause group propagation statistics. This statistic lists the clause groups that
propagate the most, i.e. the clause groups that set most of the internal variables.
In case of stream ciphers, the clause groups that cause the most propagations
are usually the groups that represent the feedback function.

• Clause group conflict statistics. This statistic gives information on which
clause groups were responsible for stopping the propagation of badly guessed

102 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

Figure 7.3: Graphviz [25] visualisation of an example search for the Crypto-1 cipher’s
states. The tree is read from left to right, top to bottom: the left- and bottommost
pentagon is the first conflict clause, the right- and bottommost circle is the satisfying
assignment.

variables (key bits or state variables), i.e. the clause groups that made the
most conflicts. In case of stream ciphers, these clause groups were consistently
the clause groups that represented the filter functions, i.e. the clause groups
that connected the known (observed) keystream bits with the state or key bits.

• Variable assignment statistics. Displays the depth at which variables were
assigned on average during the restart. For instance, if variable v1 was assigned
once at depth 10, and once at depth 20, then v1 appears with value 15 on
this list. The variables that are guessed at the top of the search tree are the
variables deemed the most important from the solver’s point of view. Unless
the solver gets lost at a wrong part of the search space, the important variables
for stream ciphers are correctly recognised to be the key or state variables.

Data sets to plot the distribution of branch depths are also provided. An example
of the produced graph is present in Fig. 7.4., where the branch depth distribution
statistics of the Grain cipher is shown. Essentially, the distribution resembles a
binary distribution cut in half. The reason for this is that it is almost trivial to guess
a small set of variables such that they do not immediately cause a conflict, but as
the number of guessed variables increases, the chance to have a conflict increases
rapidly. Therefore, the number of branches that are short is much larger than the
number of branches that are long. On the figure, the evolution of the search graph
over the restarts is also perceivable. Fundamentally, the distribution does not change
but both the maximum search depth and the maximum number of branches of a
certain length increases.

Data sets to plot learnt clause statistics is also provided: the solver counts the
number and length of learnt clauses and outputs these informations in a structured
text format. The number of learnt clauses of certain lengths can then be plotted
using the Graphviz [25] program. An example plot showing the distribution of the
learnt clauses for Grain is present in Fig. 7.5. For the plots of all ciphers’ learnt
clause length statistics, the interested reader is referred to Appendix 7.A.

7.2. ADAPTING THE SAT SOLVER 103

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

0
200
400
600
800

1000
1200
1400

0 100 200 300 400 500

N
o.

of
b
ra

n
ch

es

Branch depth

0

500

1000

1500

2000

2500

0 100 200 300 400 500 620

N
o.

of
b
ra

n
ch

es

Branch depth

Figure 7.4: Tree branch depth distribution of restart numbers 13 (at the top) and
16 (at the bottom) when solving Grain. The distribution is essentially the same,
however, since the number of allowed conflicts in the restart is more for the 16th
restart, the numbers on the x axis are higher and the maximal branch depth is larger.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 20 40 60 80 100 120 140 160 180 200

N
o.

of
cl

au
se

s

Clause length

Figure 7.5: Plot showing the distribution of the size of the learnt clauses while
solving the Grain stream cipher with our techniques. To produce the plot, solving of
the cipher was started 20 times, each time interrupting the solving process after 13
restarts. The number and length of the learnt clauses were then summed up for the
runs and plotted using Graphviz.

104 7.2. ADAPTING THE SAT SOLVER

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Conclusions regarding stream ciphers

It is clear from the statistics and the visualised search trees that during solving, the
most important variables are picked automatically by MiniSat, which for stream
ciphers are always the state or key bits. By examining smaller search graphs and
the statistics on the most conflicted clause groups, we further found that once the
important variables have been guessed, the results of these assignments are propagated
to the clause groups representing the filter functions, and if the keystream bits do
not match, a conflict occurs, a guess is reversed, and the algorithm starts again.

The solver’s strategy is therefore similar to a brute force search in which all key
or state bits are tried but with three key features that make the solver’s strategy
markedly distinct from that of a brute-forcing attack:

1. During the search, the solver learns new clauses (as detailed in Sect. 7.1.1).
These learnt clauses help the solver evade dead-ends later during the search,
thus reducing the search tree. As observed in our experiments with stream
ciphers, these learnt clauses are sometimes very short, going even so far as
being unit length (see Appendix 7.A for details).

2. During the search, if the guessed variables do not work out and a conflict is
found, not all of the stream cipher needs to be re-calculated, as is the case with
brute-forcing. The solver automatically determines the point in history where
it needs to jump back, thereby evading the re-computation of the internal
state until that point. Therefore, it is possible to quickly search part of the
search space by re-evaluating only a small part of the cipher. Furthermore,
the dynamic variable ordering logic of the solver picks the variables such as to
minimise the jump in history, therefore localising the search and maximising
the advantage of the solver compared to brute-forcing.

3. The solver evaluates the cipher’s internals only partially instead of blindly
evaluating all parts of the cipher, as is the case with brute-forcing. If the cipher
has a relatively short calculation path from its state or key bits to its keystream
bits, the solver finds and exploits it to reduce the average search tree depth.

7.2.5 Optimal attack method

The lessons learnt from search-tree tracing are as follows. It is best not to include
long initialisation sequences (such as that used by Grain) in the equations since
after initialisation all keystream bits depend on all key bits. This forces the solver
to calculate a large part of the cipher in an ineffective way, as its description and
subsequent evaluation in the solver is more complicated than the way the cipher was
originally meant to be calculated.

There are a number of criteria that secure stream ciphers must adhere to. Among
these criteria is that its state should not be recoverable at any point during keystream
generation. Therefore, to break stream ciphers, instead of making initialisation part
the problem, for the best results, we have found it useful to treat its state at a
suitable point as the unknown. This way, we could take the most advantage of the
partial evaluation property of SAT solvers. Although the state of a stream cipher is
larger than the key for all modern ciphers, it is relatively easy to solve a large part

7.2. ADAPTING THE SAT SOLVER 105

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

State bit
3

State bit
4

States

Filter
Function

Filter

Key
stream

Feedback
Function

Feed
back

Filter Filter

Reference state

State bit
2

State bit
1

State bit
5

Feed
back

Feed
back

State bit
6

Filter

1st bit 2nd bit 3rd bit 4th bit

Figure 7.6: Logical circuit representation of an example stream cipher: The cipher
has a 3-bit shift register, whose filter function depends on the first two bits in the
register, and whose feedback function depends on the last two bits in the register.

of it, as the keystream bits depend much more directly on the selected state’s bits —
the search tree for these state bits is thus shallow.

7.3 Adapting the cipher representation

Finding the best representation of stream ciphers in regular and xor-clauses is a
crucial step in breaking a cipher with SAT solvers [4, Sect. 8]. For the techniques in
this chapter, a cipher is described as a logical circuit with functions, variables, the
known keystream, and known inputs.

7.3.1 Logical circuit representation

In the logical circuit representation used in our approach, the unknown is the reference
state’s bits, and functions are expressed in regular and xor-clauses, using variables
as input. An example logical circuit for a 3-bit state stream cipher is given in Fig.
7.6. In the figure, the cipher produces four keystream bits, and the shift register is
shifted three times, using the feedback function. Functions are shown as hexagons,
variables as simple boxes, and the reference state is marked in grey.

The depth of a keystream bit is the number of distinct functions (resp. hexagons)
traversed on the way from the keystream bit to the reference state bits. For example,
on Fig. 7.6. the 1st keystream bit’s depth is one, while the 4th keystream bit’s is four.
Since the solver guesses the reference state’s bits, the depth of the circuit indicates
the number of functions that must be evaluated by the solver to realise that a wrong
guess was made for a given keystream bit. Therefore, the shallower the overall depth
of the circuit, the faster the solving.

The difficulty hidden behind the functions (resp. hexagons) is also relevant, as
they must be calculated whenever traversed. If the number and length of clauses

106 7.3. ADAPTING THE CIPHER REPRESENTATION

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

fe
ed

ba
ck

fu
nc

. 4
8

st
at

e
48

fa
 [3

6,
45

,4
6,

48
]

st
at

e
47

fe
ed

ba
ck

fu
nc

. 5
0

fe
ed

ba
ck

fu
nc

. 5
1

fe
ed

ba
ck

fu
nc

. 5
2

fa
 [3

5,
44

,4
5,

47
]

fa
 [3

7,
46

,4
7,

49
]

st
at

e
46

fe
ed

ba
ck

fu
nc

. 4
9

fa
 [3

4,
43

,4
4,

46
]

st
at

e
43

fa
 [3

3,
42

,4
3,

45
]

st
at

e
42

st
at

e
41

st
at

e
30

fb
 [2

7,
28

,3
0,

32
]

fb
 [2

9,
30

,3
2,

34
]

fb
 [3

0,
31

,3
3,

35
]

st
at

e
26

fb
 [1

7,
21

,2
3,

26
]

fb
 [2

0,
24

,2
6,

29
]

st
at

e
23

fb
 [1

9,
23

,2
5,

28
]

st
at

e
22

fb
 [1

6,
20

,2
2,

25
]

fb
 [1

8,
22

,2
4,

27
]

st
at

e
16

fb
 [9

,1
3,

15
,1

6]

fb
 [1

0,
14

,1
6,

17
]

st
at

e
8

fb
 [8

,1
2,

14
,1

5]

fa
 [4

,5
,7

,8
]

fa
 [5

,6
,8

,9
]

st
at

e
7

fb
 [7

,1
1,

13
,1

4]

fa
 [3

,4
,6

,7
]

st
at

e
6

fa
 [2

,3
,5

,6
]

st
at

e
3

st
at

e
2

fa
 [1

,2
,4

,5
]

st
at

e
0

st
at

e
49

st
at

e
44

st
at

e
31

fb
 [2

8,
29

,3
1,

33
]

fb
 [3

1,
32

,3
4,

36
]

st
at

e
27

st
at

e
24

st
at

e
17

fb
 [1

1,
15

,1
7,

18
]

st
at

e
9

st
at

e
4

st
at

e
1

st
at

e
50

st
at

e
45

st
at

e
32

st
at

e
28

st
at

e
25

st
at

e
18

st
at

e
10

st
at

e
5

st
at

e
51

st
at

e
33

st
at

e
29

st
at

e
19

st
at

e
11

st
at

e
52

st
at

e
34

st
at

e
20

st
at

e
12

st
at

e
13

st
at

e
14

st
at

e
15

st
at

e
21

st
at

e
35

st
at

e
36

st
at

e
37

fa
 [1

,2
,4

,5
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 0

fb
 [7

,1
1,

13
,1

4]

in
te

rn
al

 v
ar

fb
 [1

6,
20

,2
2,

25
]

in
te

rn
al

 v
ar

fb
 [2

7,
28

,3
0,

32
]

in
te

rn
al

 v
ar

fa
 [3

3,
42

,4
3,

45
]

in
te

rn
al

 v
ar

fa
 [2

,3
,5

,6
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 1

fb
 [8

,1
2,

14
,1

5]

in
te

rn
al

 v
ar

fb
 [1

7,
21

,2
3,

26
]

in
te

rn
al

 v
ar

fb
 [2

8,
29

,3
1,

33
]

in
te

rn
al

 v
ar

fa
 [3

4,
43

,4
4,

46
]

in
te

rn
al

 v
ar

fa
 [3

,4
,6

,7
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 2

fb
 [9

,1
3,

15
,1

6]

in
te

rn
al

 v
ar

fb
 [1

8,
22

,2
4,

27
]

in
te

rn
al

 v
ar

fb
 [2

9,
30

,3
2,

34
]

in
te

rn
al

 v
ar

fa
 [3

5,
44

,4
5,

47
]

in
te

rn
al

 v
ar

fa
 [4

,5
,7

,8
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 3

fb
 [1

0,
14

,1
6,

17
]

in
te

rn
al

 v
ar

fb
 [1

9,
23

,2
5,

28
]

in
te

rn
al

 v
ar

fb
 [3

0,
31

,3
3,

35
]

in
te

rn
al

 v
ar

fa
 [3

6,
45

,4
6,

48
]

in
te

rn
al

 v
ar

fa
 [5

,6
,8

,9
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 4

fb
 [1

1,
15

,1
7,

18
]

in
te

rn
al

 v
ar

fb
 [2

0,
24

,2
6,

29
]

in
te

rn
al

 v
ar

fb
 [3

1,
32

,3
4,

36
]

in
te

rn
al

 v
ar

fa
 [3

7,
46

,4
7,

49
]

in
te

rn
al

 v
ar

Figure 7.7: Clause- and variable-dependency graph of HiTag2. Clause groups are
represented as hexagons, and variables as boxes. The known keystream bits are the
5 final filter functions at the top, and the feedback functions are the 5 hexagons at
the bottom right.

representing these hexagons are large, the solver is slowed down considerably. Finally,
the number of reference state bits each keystream bit depends on plays an important
role during solving, as a large part of these must be guessed before evaluation can
take place. This dependency number can be calculated by simply traversing the
graph in a breath-first search fashion from the keystream up. The lower this number,
the faster the solving.

To summarise, when attempting to represent a cipher, the depth of the resulting
logical circuit, the number of reference state bit dependencies and the complexity of
the traversed functions’ representations must all be optimised to maximise solving
speed.

7.3.2 Generating the logical circuit representation

To evaluate the effectiveness of different representations of the same stream cipher, we
extended MiniSat by a tool that generates the logical circuit’s description. Given some
additional information in the input language, the circuit is visualised with Graphviz

or statistically analysed to calculate keystream bit depths and state-bit dependencies.
In the generated circuit, just as in the search tree, clauses are grouped into logical
elements (such as a filter function), and variables are named (such as reference state
bit). An example visualisation of HiTag2’s logical circuit representation is in Fig.
7.7.

Having the logical circuit representation allowed us to implement a dependency-
tree walker that removes functions whose output does not contribute to any keystream
bits, e.g. the last feedback function in Fig. 7.6. The method used is in essence the
same that is used in electric circuit design to remove unused elements, applied to the
domain of SAT solver-based cryptanalysis. Removing useless functions gives only a
minor speedup of about 1%, however, unnecessary functions no longer show up on
the dynamic behaviour analysis statistics, which helps in understanding the inner
workings of the solver.

7.3. ADAPTING THE CIPHER REPRESENTATION 107

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

7.3.3 Optimising the representation of LFSRs

Most stream ciphers contain one or more linear feedback shift registers (LFSR). For
these ciphers, the state bits not in the reference state can either be deduced by
continually applying the forward and backward feedback functions or be directly
calculated from the reference state’s bits. This latter option increases the interde-
pendency of the resulting equations, which helps the solver generate learnt clauses
that are useful for a larger part of the search tree. These learnt clauses are then used
later to avoid useless branches of the search tree, reducing the overall search time.

To generate r keystream bits, r distinct states are needed since generating the
n-th keystream bit requires the filter function to be applied to the n-th state. For
the solving to be fast, we need to choose the reference state that generates the least
complex logical circuit representation. In particular, we must minimise both the
average depth and the reference state bit dependencies. According to our experience,
this optimal reference state is usually near the r/2-th state. As an example, if we
had taken state 2 (i.e. state bits 2 to 4) as reference in Fig. 7.6., the overall depth of
the circuit would have been reduced.

7.3.4 Optimising the representation of non-linear functions

For efficient solving, the number of clauses, the average clause length, and the number
of variables should all be low, but often there exists a trade-off between the three
properties.

As an example, the simple GF(2) polynomial

x1 ⊕ x1x2 ⊕ x2x3 ⊕ x1x3

has a Karnaugh table presentation in CNF of

¬x1 ∨ ¬x3 ¬x2 ∨ x3 x1 ∨ x2

However, the same polynomial can be represented with each non-single monomial
expressed as a function, setting additional variables i1 . . . i3. The polynomial then
becomes

x1 ⊕ i1 ⊕ i2 ⊕ i3

Using this representation, the number of clauses increases to 3 × 3 regular + 1
xor-clause, and the total clause length increases to 10 from 6. Three extra variables
also need to be added, diluting the possible learnt clauses with extra variables, thus
reducing the effectiveness of learning.

On the other hand, for the GF(2) polynomial

x1 ⊕ x2 ⊕ x2x3 ⊕ x4

the Karnaugh table presentation in CNF is

¬x1 ∨ x2 ∨ x4 x1 ∨ ¬x3 ∨ x4

x1 ∨ x2 ∨ x4 x1 ∨ ¬x2 ∨ x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ x3 ∨ x4

108 7.3. ADAPTING THE CIPHER REPRESENTATION

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

While the same polynomial’s other representation, with the non-single monomial
expressed as a function, setting additional variable i1 is

x1 ⊕ x2 ⊕ i1 ⊕ x4

With this representation, the number of clauses drops to 3 regular + 1 xor-clause,
and the total clause length drops to 7 from 17, while only one extra variable needs
to be added.

The trade-offs between the two representation methods are non-trivial. From
our experience with Grain, Trivium, Crypto-1 and other ciphers, we find that the
Karnaugh-table representation works well for functions that contain few (up to 5-6)
variables and where these variables are often repeated in many monomials. For
instance, solving HiTag2 and Crypto-1 are both sped up by a factor of up to 9x
using the Karnaugh table representation.

When a polynomial can be broken up into sub-functions that do not share
variables among themselves, such as the polynomials representing the filter functions
of Crypto-1 and HiTag2, then these sub-functions must be modelled separately. This
increases the overall depth of the resulting logical circuit, however, the complexity of
the individual functions traversed during solving is much lower, which is crucial for
the solver.

7.4 Implemented Attacks

The extended SAT solver can solve many stream ciphers. Attacks against three
ciphers have been implemented that are faster than any previous SAT solver-based
attacks. In this section, we first describe how the attack times were calculated and
how the attack could be parallelised then detail the results for each cipher.

7.4.1 Calculating the expected running time

For almost all ciphers, the time to solve for their states is extremely long, even if
it takes much less time than the claimed security level would suggest. Therefore,
to predict how much time it would take to break a cipher, we first present the
Monte-Carlo method we used. We then present an improved version of the method of
Guess-and-determine that lets the attacker efficiently distribute the computational
load to multiple independent processes.

Monte-Carlo method

The Monte-Carlo method, first introduced by Metropolis and Ulam [47] is used in
many areas of research such as integration and computer security (e.g. the Rabin
primality test [52]). It is essentially a randomised algorithm that samples a tiny part
of the possibly immense space and processes the results to approximate an unknown
value for the whole space. In case of the Rabin primality test, the Monte-Carlo
algorithm uses a randomised test to decide if a positive integer is a prime or not.
The algorithm has a certain chance (< 1/4) to give a false negative result, but
running the algorithm many times essentially eliminates the chance that a number is
composite. In our case, to let the solver finish within reasonable time, we randomly

7.4. IMPLEMENTED ATTACKS 109

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

guess some randomly picked reference state bits and do many runs of these random
configurations. The time it takes to solve these randomly picked instances is then
averaged.

To improve the randomisation of each run, we replaced MiniSat’s pseudorandom
number generator (PRNG) with the Mersenne Twister algorithm [45] and used a
different randomly picked seed for each run. The original PRNG in MiniSat is a
Linear Congruential Generator (LCG) that used the prime 1389796 with period length
232 − 1, originally suggested by L’Ecuyer and Hellekalek in [37]. The new PRNG,
the Mersenne Twister is specifically designed to rectify many of the shortcomings of
LCG-based random number generators. In particular, it has a period of 219937 − 1
and has a very high order of dimensional equidistribution (while LCG-s are limited
to 5). The overhead of using this somewhat more complicated algorithm is minimal
(� 1%), but the benefits are important as they improve the confidence interval of
the final results.

To further randomise each run, we also randomly permutate the order of the
clauses in MiniSat’s memory for each run. This is a very important step in the
randomisation, as the order of clauses can (and most of the time do) contribute
to the selection of the first, second, etc. propagations and conflicts, and thus are
instrumental in deciding the flow of the algorithm.

These randomisation steps have helped us to effectively generate high-quality
random instances, and thus evaluate with high confidence the time it takes to break
a cipher given a certain number of variables. To approximate the time it takes to
attack the cipher without giving any variables we use the following technique. The
Monte-Carlo algorithm is run given G = n, n− 1, . . . n− k number of reference state
variables, where n is small enough such that the algorithm is not trivial to solve, and
n− k is as small as possible such that the resulting system is still solved within a
reasonable amount of time. The average time is then plotted against the number of
reference state variables given, and the plot is extrapolated to the point where there
are no reference state variables given.

Although there is no proof that at any point during G = n − k − 1 . . . 0 the
graph does not suddenly change, we believe this to be extremely unlikely. For the
explication of the reasons, let us first define some notions. Let us define two problems
for a given cipher: problem A is when G = x, and problem B is where G = x− 1,
where n ≥ x > 0 but otherwise x is irrelevant. Let us assume, without loss of
generality, that V is the set of reference variables, and V ′ is the set of reference
variables selected to be assigned in B. Let the set of reference variables assigned in
A be V ′

⋃
v. We can now list the reasons why we believe the graph does not deviate

from a straight line if the time is plotted in a logarithmic scale:

• Every problem in B can be directly mapped to 2|V \V ′| = 2(n−x+1) problems
in A. Since the underlying algorithm of DPLL-based SAT solvers is essentially
an intelligent brute-force, we can safely assume it does not behave worse than
a brute-force, and solves the problem B in at most twice the time than solving
any problem in A. This is further underlined by our observation that SAT
solvers branch on the reference state variables — thus the first branching of
the solver when solving B will indeed be a variable from |V \ V ′|

• The more choice of variables a SAT solver has to branch on, the better the
dynamic variable branch ordering will work. This means that it is expected of

110 7.4. IMPLEMENTED ATTACKS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

the solver to solve in less than twice the time problem B with a choice of n− x
branch variables, than two problems in A with a choice of n− x− 1 branch
variables

• Clauses learnt during the solving of A that are independent of the setting of
variable v cannot be reused between the solving instances. Therefore, it is
expected that problem B can be solved faster than two problems in A, as the
solver in the former case does not need to re-learn these same clauses

We have calculated that for ciphers HiTag2 and Crypto-1 the graph showing the
solving times versus the number of randomly guessed bits is as predicted until G = 0.
The interested reader is referred to Appendix 7.B for these graphs.

We note that the possibility of extrapolation is an advancement over previous
attempts. Previous attempts failed, as they did not introduce sufficient randomness
into the system. This lack of suitable randomisation meant that their results were
not extrapolateable [46, 24].

Guess-and-determine

Guess-and-determine is a method to effectively parallelise the solving of ciphers into
many independent sub-processes. This method entails iterating a certain, fixed set
of reference variables V to all different combinations and executing the SAT solver
for each combination. At each execution, the SAT solver’s input system has these
V variables set, and the solver must be executed with every possible 2|V | true-false
combination to use the correct combination at least once. The system whose result
is satisfiable is the solution seeked by the attacker.

The advantage of the guess-and-determine method is that the attacker can
successfully divide the original, difficult problem into 2|V | distinct sub-problems,
permitting her to run them in parallel, with a master process evaluating the results.
This is extremely useful, as it is much cheaper to buy large quantities of commodity
hardware than to make a very expensive, fast machine to execute the original problem
faster. The expected time to solve the problem is then the average time to solve one
system with the V variables set, multiplied by 2|V | and divided by the number of
processor cores available.

The challenge of the guess-and-determine method is to select the best V variables.
The SAT solver automatically selects the variables to branch on, however, the
perfection of this ordered list of variables is done throughout the running of the
solver. The attacker cannot wait for the perfection to be done for too long, and must
determine the best variables with relative speed, as it is just a pre-cursor to her real
attack algorithm.

To find the best guess bits, we implemented the function calcClauseDifficulty

into MiniSat that weights the difficulty of each clause by its length and type (xor or
regular). The following weights were found to closely correlate with the impact of
different state bits on the attack time:

difficulty = 2 · no.clauses +
∑

∀ regular
clauses

no. of literals + 7 ·
∑
∀ xor-
clauses

no. of literals

7.4. IMPLEMENTED ATTACKS 111

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Table 7.2: Running times for solving Crypto-1, HiTag2, and Bivium B using various
optimisations presented in this chapter

Vanilla Karnaugh Karnaugh and xor-clause
MiniSat optimisation optimisations

Crypto-1 500 s 72 s 40 s
HiTag2 217.8 s 215 s 214.5 s
Bivium B 236.7 s 236.7 s 236.5 s

The best V variables to set are selected as follows. The CNF system is written
down with a candidate variable v assigned. Then the CNF system is reduced using
the pre-simplification as explained in Sect. 7.2.1. The above metric is then calculated
for both v = true and v = false and the difficulties are summed. This sum is
calculated for all possible candidate variables, and the candidate variable with the
lowest sum wins entry into the collection V . To pick the next best variable, this
whole process is re-iterated, but the variables in V are always set to some random
combination, and the sum is done for many (up to a thousand) different combination
settings of variables in V .

7.4.2 The attacks

Our first two targets, Crypto-1 and its relative HiTag2, are weak ciphers used in
contactless cards and car immobilisers. The third target, Bivium B, is a simplified
version of Trivium, a modern cipher standardised through the eSTREAM competition.
The solving times for Crypto-1, HiTag2, and Bivium B are in Table 7.2, and their
detailed discussion is below.

Crypto-1

The Crypto-1 algorithm is a 48-bit stream cipher used on the NXP Mifare Classic
card. The cipher was designed to have a particularly small hardware footprint
consisting of a 48-bit LFSR and a network of small binary functions that form the
filter function. Mifare Classic is a contactless card with a maximum reading range of
10 cm. The card is widely used for micropayment in public transportiii and building
access control.

As detailed in Fig. 7.8., Crypto-1 uses a 48-bit LFSR with 18 feedback taps
and a network of small functions making up the filter function that feed off from
20 regularly placed taps. The fact that the taps of the filter function are regularly
placed makes the equations particularly easy to solve.

The security of the Mifare Classic encryption has been broken several times
already. An early attack by Nohl [50] and an attack by researchers from the Radboud
University [20] exploit the card’s weak random number generator in combination
with cryptographic weaknesses. Courtois et al. reported an algebraic attack [14]

iiiMifare Classic cards are used in the public transport systems of the Netherlands, London, Rio
de Janeiro, São Paulo, Madrid, Valencia, Oslo, Sydney, Hamilton, Delhi, Nanjing, Shanghai, Taipei,
Kuala Lumpur, Atlanta, St. Paul, Houston, Los Angles, Bangkok, and many others

112 7.4. IMPLEMENTED ATTACKS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Figure 7.8: NXP Mifare Classic Crypto-1 stream cipher. The network of small
functions f 4

a , f
4
b and f 5

c form the filter function. The numbers on top represent the
LFSR states. The ⊕ mark at the top right denotes the update function

against the cipher that works independently of the quality of the random numbers.
They did not publish the details of their attack but only stated that secret keys can
be found within 200 seconds on average on a desktop PC. Their attack modifies the
cipher representation in a mathematical way, which makes their techniques mostly
orthogonal to ours. Combining the two methods would most likely lead to further
improvements. A non-SAT solver-based attack has also been published on Crypto-1
by Garcia et al. [28] that solves for the key by inverting the filter function to arrive
at approx. 216 candidate keys, which takes only approx. O(226) operations to break

— taking only a fraction of a second on a desktop computer.

On a general-purpose single-core PC, using r = 56 bits of known keystream,
our SAT solver-based attack breaks the cipher in 40 seconds on average. As the
attack can be fully parallelised, the same task only takes 10 seconds on a quad-core
processor.

HiTag2

The HiTag2 stream cipher, illustrated in Fig. 7.9., is closely related to Crypto-1
and is used in RFID tags by NXP. HiTag2 and Crypto-1 share the same general
structure and key length, but differ in their feedback and filter functions, and their
filter function taps. In particular, the irregularly placed taps to the filter function
make HiTag2 much harder to solve than Crypto-1: the SAT solver needs to guess
more variables before the equations start leading to contradictions. Since HiTag2
succeeds Crypto-1, it can be assumed that the changes to the cipher were made to
improve the cryptographic complexity without increasing hardware costs.

The HiTag2 cipher is harder to break in comparison with Crypto-1: using r = 56

7.4. IMPLEMENTED ATTACKS 113

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Figure 7.9: NXP HiTag2 stream cipher. The network of small functions f 4
a , f

4
b and

f 5
c form the filter function. The numbers on top represent the LFSR states. The ⊕

mark at the top right denotes the update function

bits of known keystream, recovering the LFSR state takes about 6.5 hours on average
using a single-core desktop PC. As with Crypto-1, the attack can be parallelised and
so on a quad-core Xeon it only takes about 1h 40m on average.

Bivium B

The Bivium B stream cipher, put forward by Raddum [53] for research purposes
is illustrated in Algorithm 6. It is a reduced version of the original Trivium cipher
by Cannière [10], and is intended to be used solely as a research tool to analyse
the original cipher. The research papers that try to solve Bivium B using SAT
solver-based techniques [53, 24, 46] improve on each other’s results, the best of which
is solving on average in 242.7 s on a desktop machine. There are research papers that
attack Bivium B in other ways, mainly through other algebraic techniques. One such
attack is by Borghoff et al. [8] who treat Bivium B as a mixed-0-1 linear programming
problem and estimate to find its state in about 264.5 s. Another algebraic attack is
the cube attack by Dinur and Shamir [21] who give results only for Trivium, but
mention Bivium B as a possible attack candidate, as their techniques should be
applicable to Bivium B in such a way as the total timeiv to break it would be lower
than our results with the adapted MiniSat.

Bivium B can be solved by describing it in MiniSat using the enhancements and
insight presented in this chapter. Due to the reasons outlined in Sect. 7.4.1 we can
extrapolate the graph showing its solving times in Fig. 7.10., giving the result that
solving the cipher’s state given 177 keystream bits takes about 236.5 s on average.

To generate this result, Gaussian elimination was turned off, as it proved to slow

ivIncluding pre-processing, the most time-consuming phase of the cube attack

114 7.4. IMPLEMENTED ATTACKS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

Algorithm 6: Description of Bivium B’s keystream generation. Bivium B has
177 states, (s1,s2,. . ., s177), and the keystream generated is (z1, . . ., zr)

Input: (s1,s2,. . ., s177), N
Output: z1, z2, . . ., zr

for i = 1 to r do1

t1 ← s66 ⊕ s93;2

t2 ← s162 ⊕ s177;3

zi ← t1 ⊕ t2;4

t1 ← t1 ⊕ (s91∧ s92) ⊕ s171;5

t2 ← t2 ⊕ (s175∧ s176) ⊕ s69;6

(s1, s2, . . ., s93) ← (t2, s1, . . . s92);7

(s94, s95, . . ., s177) ← (t1, s94, . . . s176);8

end9

0.1

1

10

100

1000

40 42 44 46 48 50 52 54 56

T
im

e
(s

)

No. of randomly guessed bits

Figure 7.10: Solving the Bivium B cipher 1000 times and averaging the results.
Guess bits were randomly selected and assigned. The time to solve is exponential in
the number of guess bits. Extrapolating the graph to zero on the x axis, the time to
solve is 236.5 s

down the solver if less than 58 reference state bits were guessed — for more than 58
guessed bits however, Gaussian elimination with cut-off depth 8 gave an average 5%
speedup.

7.5 Conclusions

SAT solvers are powerful tools in the analysis of mathematical assumptions, including
cryptographic hardness and complexity assumptions. The full potential of SAT
solving can only be achieved by matching the problem description to the solver
language. For cryptographic ciphers, matching the solver and the problem requires
extensive changes to the solver itself. We implemented several steps towards a
specialised SAT solver for cryptography including native support for the XOR
operation, Gaussian elimination, and logical circuit generation.

The extended solver solves problems from its target domain, simple and complex

7.5. CONCLUSIONS 115

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

stream ciphers, faster than any other known SAT-solver based techniques. The
Crypto-1 cipher is solved in 40 seconds, HiTag2 in 214.5 s, while Bivium B takes
236.5 s, 26 times less than the previous best SAT solver-based attack [46]. Stream
ciphers can be strengthened against the attacks presented in this chapter through
the use of larger states, more complex feedback functions, and through longer
initialisation phases.

116 7.5. CONCLUSIONS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

7.A Learnt clause length statistics

0
500

1000
1500
2000
2500
3000

0 5 10 15 20 25 30 35 40 45 50

N
o.

of
cl

au
se

s

Clause length

Figure 7.11: Plot showing the distribution of the size of the learnt clauses while
solving the HiTag2 stream cipher with our techniques. To produce the figure, solving
of the cipher was started 20 times, each time interrupting the solving process after
13 restarts. The number and length of the learnt clauses were then summed up for
the runs and plotted using Graphviz.

0
500

1000
1500
2000
2500
3000
3500

0 5 10 15 20 25 30 35 40

N
o.

of
cl

au
se

s

Clause length

Figure 7.12: Plot showing the distribution of the size of the learnt clauses while
solving the HiTag2 stream cipher with our techniques when given 10 randomly set
and randomly picked reference state bits. To produce the figure, solving of the cipher
was started 20 times, each time interrupting the solving process after 13 restarts.
The number and length of the learnt clauses were then summed up for the runs and
plotted using Graphviz.

7.A. LEARNT CLAUSE LENGTH STATISTICS 117

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

0
1000
2000
3000
4000
5000
6000

0 5 10 15 20 25 30 35 40 45 50

N
o.

of
cl

au
se

s

Clause length

Figure 7.13: Plot showing the distribution of the size of the learnt clauses while
solving the Crypto-1 stream cipher with our techniques. To produce the figure,
solving of the cipher was started 20 times, each time interrupting the solving process
after 13 restarts. The number and length of the learnt clauses were then summed up
for the runs and plotted using Graphviz.

0
200
400
600
800

1000
1200
1400
1600

0 5 10 15 20 25 30

N
o.

of
cl

au
se

s

Clause length

Figure 7.14: Plot showing the distribution of the size of the learnt clauses while
solving the Crypto-1 stream cipher with our techniques when given 10 randomly set
and randomly picked reference state bits. To produce the figure, solving of the cipher
was started 20 times, each time interrupting the solving process after 13 restarts.
The number and length of the learnt clauses were then summed up for the runs and
plotted using Graphviz.

118 7.A. LEARNT CLAUSE LENGTH STATISTICS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90 100 110

N
o.

of
cl

au
se

s

Clause length

Figure 7.15: Plot showing the distribution of the size of the learnt clauses while
solving the Bivium B stream cipher with our techniques. To produce the figure,
solving of the cipher was started 20 times, each time interrupting the solving process
after 13 restarts. The number and length of the learnt clauses were then summed up
for the runs and plotted using Graphviz.

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90

N
o.

of
cl

au
se

s

Clause length

Figure 7.16: Plot showing the distribution of the size of the learnt clauses while
solving the Bivium B stream cipher with our techniques when given 20 randomly set
and randomly picked reference state bits. To produce the figure, solving of the cipher
was started 20 times, each time interrupting the solving process after 13 restarts.
The number and length of the learnt clauses were then summed up for the runs and
plotted using Graphviz.

7.A. LEARNT CLAUSE LENGTH STATISTICS 119

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 20 40 60 80 100 120 140 160 180 200

N
o.

of
cl

au
se

s

Clause length

Figure 7.17: Plot showing the distribution of the size of the learnt clauses while
solving the Grain stream cipher with our techniques. To produce the figure, solving
of the cipher was started 20 times, each time interrupting the solving process after
13 restarts. The number and length of the learnt clauses were then summed up for
the runs and plotted using Graphviz.

0
1000
2000
3000
4000
5000
6000

0 20 40 60 80 100 120

N
o.

of
cl

au
se

s

Clause length

Figure 7.18: Plot showing the distribution of the size of the learnt clauses while
solving the Grain stream cipher with our techniques when given 60 randomly set and
randomly picked reference state bits. To produce the figure, solving of the cipher
was started 20 times, each time interrupting the solving process after 13 restarts.
The number and length of the learnt clauses were then summed up for the runs and
plotted using Graphviz.

120 7.A. LEARNT CLAUSE LENGTH STATISTICS

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

7.B HiTag2 and Crypto-1 extrapolation examples

It is interesting to observe that the time it takes to solve both HiTag2 and Crypto1
is less if we give G = 0 help bits than the extrapolation of the graphs in Fig. 7.19
and Fig. 7.20 would indicate. This is because at G = 0, all problem instances are
satisfiable, but at G = 1 only half of them, and at G = x, only 2−x portion of them
are satisfiable. Instances that are UNSAT take approximately twice the time to solve
than satisfiable instances as have been observed by others [46] — this is because on
average, the satisfying solution is found in the middle of the search space, while to
find UNSAT, all of the search space must be exhausted. If every point in the graphs
are compensated for this, graphically they all form a straight line.

0.01

0.1

1

10

100

0 2 4 6 8 10

T
im

e
(s

)

No. of randomly guessed bits

Figure 7.19: Plot showing the average time it took to solve the Crypto-1 stream
cipher given different numbers of randomly picked and randomly set reference bits.
We used one core of a desktop computer with the following specifications: Intel Xeon
E5345@2.33GHz, 4MB cache, 4GB memory

0.01
0.1

1
10

100
1000

10000
100000

0 5 10 15 20

T
im

e
(s

)

No. of randomly guessed bits

Figure 7.20: Plot showing the average time it took to solve the HiTag2 stream cipher
given different numbers of randomly picked and randomly set reference bits. We
used one core of a desktop computer with the following specifications: Intel Xeon
E5345@2.33GHz, 4MB cache, 4GB memory

7.B. HITAG2 AND CRYPTO-1 EXTRAPOLATION EXAMPLES 121

CHAPTER 7. USING SAT SOLVERS TO ANALYSE LOW
HARDWARE-COMPLEXITY STREAM CIPHERS

122 7.B. HITAG2 AND CRYPTO-1 EXTRAPOLATION EXAMPLES

Bibliography

[1] Anderson, R. A5 (was: Hacking digital phones). Newsgroup Communication,
1994.

[2] Babbage, S., Canniere, C. D., Canteaut, A., Cid, C., Gilbert, H.,
Johansson, T., Paar, C., Parker, M., Preneel, B., Rijmen, V.,
Robshaw, M., and Wu, H. The eSTREAM portfolio. Tech. rep., eStream
Project, September 2008.

[3] Babbage, S., and Dodd, M. The MICKEY stream ciphers. In New Stream
Cipher Designs: The eSTREAM Finalists (Berlin, Heidelberg, 2008), Springer-
Verlag, pp. 191–209.

[4] Bard, G. V. Algorithms for the solution of polynomial and linear systems of
equations over finite fields, with an application to the cryptanalysis of KeeLoq.
Tech. rep., University of Maryland Dissertation, April 2008. Ph.D. Thesis.

[5] Bard, G. V. Algebraic Cryptanalysis, vol. XXXIV of Security and Cryptology.
Springer, 2009.

[6] Bard, G. V., Courtois, N. T., and Jefferson, C. Efficient methods for
conversion and solution of sparse systems of low-degree multivariate polynomials
over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report 2007/024,
http://eprint.iacr.org/2007/024, 2007.

[7] Baumgartner, P., and Massacci, F. The taming of the (X)OR. In
Computational Logic — CL 2000 (2000), vol. 1861/2000 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 508–522.

[8] Borghoff, J., Knudsen, L. R., and Stolpe, M. Bivium as a mixed-0-1
linear programming problem. In WEWoRC — Western European Workshop on
Research in Cryptology (Graz, Austria, July 2009).

[9] Bosma, W., Cannon, J., and Matthews, G. Programming with algebraic
structures: design of the MAGMA language. In Proceedings of the international
symposium on Symbolic and algebraic computation — ISSAC ’94 (New York,
NY, USA, 1994), ACM, pp. 52–57.

[10] Cannière, C. D. Trivium: A stream cipher construction inspired by block
cipher design principles. In ISC (2006), S. K. Katsikas and et al, Eds., vol. 4176
of LNCS, Springer, pp. 171–186.

123

http://eprint.iacr.org/2007/024

BIBLIOGRAPHY

[11] Courtois, N., Bard, G. V., and Wagner, D. Algebraic and slide attacks
on KeeLoq. In FSE (2008), K. Nyberg, Ed., vol. 5086 of Lecture Notes in
Computer Science, Springer, pp. 97–115.

[12] Courtois, N. T. Fast algebraic attacks on stream ciphers with linear feedback.
In Advances in Cryptology — CRYPTO 2003 (2003), vol. 2729/2003 of LNCS,
Springer, pp. 176–194.

[13] Courtois, N. T., and Bard, G. V. Algebraic cryptanalysis of the Data
Encryption Standard. In IMA Int. Conf. (2007), S. D. Galbraith, Ed., vol. 4887
of Lecture Notes in Computer Science, Springer, pp. 152–169.

[14] Courtois, N. T., Nohl, K., and O’Neil, S. Algebraic attacks on the
Crypto-1 stream cipher in Mifare Classic and Oyster cards. Tech. Rep. 2008/166,
Cryptology ePrint Archive, 2008.

[15] Daemen, J., and Rijmen, V. Rijndael/aes. In Encyclopedia of Cryptography
and Security, H. C. A. van Tilborg, Ed. Springer, 2005.

[16] Davis, M., and Putnam, H. A computing procedure for quantification theory.
J. ACM 7, 3 (1960), 201–215.

[17] Dawiche, A. New advances in compiling CNF to decomposable negation
normal form. In Proc. of European Conference on Artificial Intelligence (2004),
pp. 328 – 332.

[18] de Koning Gans, G., Hoepman, J.-H., and Garcia, F. D. A practical
attack on the MIFARE Classic. In CARDIS (2008), G. Grimaud and F.-X.
Standaert, Eds., vol. 5189 of Lecture Notes in Computer Science, Springer,
pp. 267–282.

[19] Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE
Transactions on Information Theory IT-22, 6 (1976), 644–654.

[20] Digital Security group, Radboud University Nijmegen. Security flaw
in Mifare Classic. Press release, March 2008. http://www.ru.nl/english/

general/radboud_university/vm/security_flaw_in/.

[21] Dinur, I., and Shamir, A. Cube attacks on tweakable black box polynomials.
In EUROCRYPT (2009), A. Joux, Ed., vol. 5479 of Lecture Notes in Computer
Science, Springer, pp. 278–299.

[22] Eén, N., and Sörensson, N. An extensible SAT-solver. In SAT (2003),
E. Giunchiglia and A. Tacchella, Eds., vol. 2919 of LNCS, Springer, pp. 502–518.

[23] Eén, N., and Sörensson, N. Temporal induction by incremental SAT solving.
In Proc. of First Intrenational Workshop on Bounded Model Checking (2003),
vol. 89 of ENTCS, Elsevier.

[24] Eibach, T., Pilz, E., and Völkel, G. Attacking Bivium using SAT solvers.
In SAT (2008), H. K. Büning and X. Zhao, Eds., vol. 4996 of LNCS, Springer,
pp. 63–76.

124 BIBLIOGRAPHY

http://www.ru.nl/english/general/radboud_university/vm/security_flaw_in/
http://www.ru.nl/english/general/radboud_university/vm/security_flaw_in/

BIBLIOGRAPHY

[25] Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., and
Woodhull, G. Graphviz — open source graph drawing tools. In Graph
Drawing (2001), P. Mutzel, M. Jünger, and S. Leipert, Eds., vol. 2265 of Lecture
Notes in Computer Science, Springer, pp. 483–484.

[26] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra 1, 139 (June 1999), 61–88.

[27] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In ISSAC ’02 (2002), ACM, pp. 75–83.

[28] Garcia, F. D., and et al. Dismantling MIFARE Classic. In ESORICS
(2008), S. Jajodia and J. López, Eds., vol. 5283 of LNCS, Springer, pp. 97–114.

[29] Giunchiglia, F., Shvaiko, P., and Yatskevich, M. S-Match: an algorithm
and an implementation of semantic matching. In Semantic Interoperability and
Integration (2005), Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and
M. Uschold, Eds., no. 04391 in Dagstuhl Seminar Proceedings, IBFI. http:

//drops.dagstuhl.de/opus/volltexte/2005/37.

[30] Gomes, C. P., Selman, B., Crato, N., and Kautz, H. A. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems. Journal of
Automated Reasoning 24, 1/2 (2000), 67–100.

[31] Greuel, G.-M., Pfister, G., and Schönemann, H. SINGULAR — a
computer algebra system for polynomial computations. In Symbolic computation
and automated reasoning (Natick, MA, USA, 2001), A. K. Peters, Ltd., pp. 227–
233.

[32] Hell, M., Johansson, T., and Meier, W. Grain — a stream cipher
for constrained environments. In Proceeding of the Workshop on RFID and
Lightweight Crypto (July 2005), pp. 114–125.

[33] Heras, F., Larrosa, J., and Oliveras, A. MiniMaxSAT: An efficient
Weighted Max-SAT Solver. Journal of Artificial Intelligence Research 31 (2008),
1–32.

[34] Hsieh, H. Y., and Ghausi, M. S. On optimal-pivoting algorithms in sparse
matrices. IEEE Trans. Circuit Theory CT-19 (January 1972), 93–96.

[35] Karnaugh, M. The map method for synthesis of combinational logic circuits.
Transactions of American Institute of Electrical Engineers part I 72, 9 (November
1953), 593–599.

[36] Kibria, R. MidiSat - An extension of MiniSAT. Tech. rep., Department of
Electrical and Computer Engineering, Darmstadt University of Technology,
April 2005.

[37] L’Ecuyer, P., and Hellekalek, P. Random number generators: Selection
criteria and testing. In Random and Quasi-Random Point Sets (New York,
1998), vol. 138 of Lecture Notes in Statistics, Springer-Verlag, pp. 223–266.

BIBLIOGRAPHY 125

http://drops.dagstuhl.de/opus/volltexte/2005/37
http://drops.dagstuhl.de/opus/volltexte/2005/37

BIBLIOGRAPHY

[38] Leonardo de Moura, B. D., and Shankar, N. A tutorial on satisfiability
modulo theories. In Computer Aided Verification (2007), vol. 4590/2007 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 20–36.

[39] Li, C. M. Equivalency reasoning to solve a class of hard SAT problems. In
Information Processing Letters (1999), pp. 76–1.

[40] Li, C. M. Integrating equivalency reasoning into davis-putnam procedure. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence
(2000), AAAI Press / The MIT Press, pp. 291–296.

[41] Malik, S., Zhao, Y., Madigan, C. F., Zhang, L., and Moskewicz,
M. W. Chaff: Engineering an efficient SAT solver. Design Automation Confer-
ence (2001), 530–535.

[42] Mandelbrot, B. B. The pareto-lévy law and the distribution of income.
Internat. Econom. Rev. 1 (1960), 79–106.

[43] Massacci, F. Using Walk-SAT and Rel-sat for cryptographic key search. In
Proc. of IJCAI-99 (1999), M. Kaufmann, Ed., pp. 290–295.

[44] Massacci, F., and Marraro, L. Logical cryptanalysis as a SAT-problem:
Encoding and analysis. Journal of Automated Reasoning 24 (2000), 165–203.

[45] Matsumoto, M., and Nishimura, T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul. 8, 1 (January 1998), 3–30.

[46] McDonald, C., Charnes, C., and Pieprzyk, J. Attacking Bivium with
MiniSat. Tech. Rep. 2007/040, ECRYPT Stream Cipher Project, 2007.

[47] Metropolis, N., and Ulam, S. The Monte Carlo method. Journal of the
American Statistical Association 44, 247 (1949), 335–341.

[48] Molnar, D., and Wagner, D. Privacy and security in library RFID:
issues, practices, and architectures. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security (New York, NY, USA,
2004), ACM Press, pp. 210–219.

[49] National Bureau of Standards. Data Encryption Standard, 1977.

[50] Nohl, K. Cryptanalysis of Crypto-1. Press release, March 2008. http:

//www.cs.virginia.edu/~kn5f/Mifare.Cryptanalysis.htm.

[51] Nohl, K. Description of HiTag2. Press release, March 2008. http:

//cryptolib.com/ciphers/hitag2/.

[52] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory
12, 1 (1980), 128–138.

126 BIBLIOGRAPHY

http://www.cs.virginia.edu/~kn5f/Mifare.Cryptanalysis.htm
http://www.cs.virginia.edu/~kn5f/Mifare.Cryptanalysis.htm
http://cryptolib.com/ciphers/hitag2/
http://cryptolib.com/ciphers/hitag2/

BIBLIOGRAPHY

[53] Raddum, H. Cryptanalytic results on Trivium. Tech. Rep. 2006/039, ECRYPT
Stream Cipher Project, 2006. www.ecrypt.eu.org/stream/papersdir/2006/
039.ps.

[54] Raddum, H., and Semae, I. New technique for solving sparse equation
systems, January 2006. eprint.iacr.org/2006/475/.

[55] Rivest, R. L., Shamir, A., and Adleman, L. M. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM
21 (1978), 120–126.

[56] Robshaw, M., and Billet, O., Eds. The eSTREAM Finalists, vol. 4986 of
Lecture Notes in Computer Science. Springer, 2008.

[57] Silva, J. P. M., and Sakallah, K. A. GRASP-a new search algorithm for
satisfiability. In ICCAD’96 (1996), IEEE Computer Society, pp. 220–227.

[58] Sinz, C. Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reason. 39, 2 (2007), 219–243.

[59] Sinz, C., and Dieringer, E.-M. DPvis — A tool to visualize the structure
of SAT instances. In SAT (2005), F. Bacchus and T. Walsh, Eds., vol. 3569 of
Lecture Notes in Computer Science, Springer, pp. 257–268.

[60] The SAGE Group. SAGE Mathematics Software (Version 3.1.2), 2008.

[61] Warners, J. P., and Maaren, H. V. A two phase algorithm for solving a
class of hard satisfiability problems. Operations Research Letters 23, 3–5 (1999),
81–88.

[62] Wieringa, S. MiniMarch — Embedding lookahead direction heuristics in a
conflict driven solver. Tech. rep., Technische Universiteit Delft, 2007. Research
Report.

BIBLIOGRAPHY 127

www.ecrypt.eu.org/stream/papersdir/2006/039.ps
www.ecrypt.eu.org/stream/papersdir/2006/039.ps
eprint.iacr.org/2006/475/

BIBLIOGRAPHY

128 BIBLIOGRAPHY

Conclusions

In this thesis we have described the RFID hardware and software layers, iterating
through all major RFID security protocols, highlighting their insecurities and short-
comings. Next, we analysed the Di Pietro-Molva scheme, uncovering some insecurities
and obscure features of the protocol. Then, we proposed two new RFID identification
schemes, the ProbIP and EProbIP schemes, highlighting how EProbIP has been
secured against attacks that were possible against ProbIP. Next, we demonstrated
the use of stream ciphers in RFIDs, and finally, adopted SAT solvers to analyse low
hardware-complexity stream ciphers, used in RFID protocols.

We believe that in the coming years, the implemented RFID protocols will be
based on lightweight versions of established crypto-primitives, but in the long run,
they may well be based on protocols that are currently in an experimental state,
such as the Di Pietro-Molva or the EProbIP schemes that have been elaborated
upon in this thesis. These experimental protocols could offer tailor-made solutions
to RFIDs, while protocols that are based on standard crypto-primitives must always
retain some of their disadvantages. However, as we have seen in both the case of
the Di Pietro-Molva and the ProbIP protocols, experimental protocols are at the
moment quite fragile from a security standpoint, thus their large-scale adoption will
have to wait until they have been shown to stand the scrutiny of cryptographers.

It is possible, that when experimental RFID protocols finally achieve the status
of being well-tested and secure, they will resemble lightweight crypto-primitives that
are available today. The reasoning behind this is that as experimental protocols
get redesigned again and again, their complexity gradually increases to counter the
attacks found against them. This kind of feature-creep is in fact very characteristic
of experimental protocols. For example, HB+ started out as an extremely lightweight
protocol, but its subsequent re-designs HB++ and HB# have each added an extra
layer of complexity, going as far as having a very large (though special) matrix stored
inside the tag for HB#. With so many re-designs and extra layers of complexity
added, experimental protocols can easily loose their edge over traditional cipher
designs.

However, even if ad-hoc protocols finally loose their advantage over standard
ciphers, the research activity invested in such protocols has not been in vain. Without
such research, it would be impossible to tell if the research community has not missed
out on a design that could have revolutionised the field. For example, the HB+ class
of protocols have brought a fresh idea into the area of cryptographic research.

The RFID protocol that is finally selected and implemented can make a large
difference on the acceptability of RFID systems. For instance, if the implemented
protocol is found to be insecure but is already active and in widespread use (i.e. the
tags have not been deactivated as is now customary), RFIDs could suffer a large

129

backlash, with potentially fateful consequences. On the other hand, if the protocol is
found to be reasonably secure over time, RFIDs could enjoy a large boom with tags
in all, and readers in many consumer products such as intelligent washing machines,
refrigerators, etc. The choice of the protocol is therefore crucial for the long-term
use of RFIDs in sectors other than supply chain management, the sole sector EPC
tags are used in at the moment.

If the choice of the RFID protocol finally selected is wise, many day-to-day chores
of people could be eliminated. For example, checkout counters in large supermarkets
could be replaced with self-checkout counters, where the RFIDs on the items bought
could indicate the final price to be paid by the customers. Similar repetitive tasks,
such as checking the ”best before” tags on items in the refrigerator, or making sure
that colours are not mixed in the drum of the washing machine, could be eliminated.

Although such uses seem innocuous, users and researchers must always watch out
for insecurities and feature-creeps in the use of RFIDs: there is a large responsibility
on researchers in the field for investigating and making sure that schemes that are not
secure, such as the Crypto-1 cipher, are discovered and dealt with. Without proper
investigation of these protocols, businesses could tell half-truths about their products,
endangering other businesses’ and people’s lives and livelihoods. For example, the
Mifare card is marketed as an access-control device, and many institutions have
installed it to such effect, even though its security material (the cryptographic key)
can be copied in the matter of seconds, without prior approval (or even a remote
chance of discovery) by the owner. As another, somewhat more disturbing example,
passports have recently been tagged with RFIDs, which later have been shown to
be leaking information even from a relatively large distance. After this discovery,
American passports have been augmented with an integrated wire mesh, acting as a
Faraday cage, but European passports still do not implement this feature. These
and similar problems occur when RFIDs are implemented either wrongly, or for the
wrong purposes. Therefore, public scrutiny and extensive, public research on RFIDs
is of essence not only to ensure the security of RFIDs, but to ensure the security and
liberty of society as a whole.

130

Annexe A

Protocoles de protection de la vie
privée et de sécurité pour les
RFIDs

A.1 Introduction

Les puces RFID, c’est-à-dire les systèmes d’identification à radio-fréquence se
montrent capables de substituer à l’avenir les systèmes de codes barres appliqués
de nos jours. Ce changement implique de nombreuses possibilités : un contrôle plus
minutieux des stockages, une lecture plus rapide des codes barres ou bien un service
de facture sans papier inutile. En revanche, les systèmes RFID utilisés actuellement
présentent de multiples inconvénients susceptibles d’entraver leur extension à l’avenir :
entre autres, ils peuvent s’avérer dangereux pour la vie privée, de plus, la sécurité de
leur authenticité n’est pas résolue.

Durant mon doctorat, j’ai fait connaissance avec les protocoles qui concernent les
problèmes soulevés par les RFID (Premier chapitre). Un article dans lequel j’ai créé
un nouveau protocole de sécurité a été publié (Deuxième chapitre). Ensuite, j’ai publié
un article présentant les imperfections d’un protocole déjà publié (Troisième chapitre).
Finalement, j’ai publié un article dans lequel je transforme les algorithmes SAT de
telle sorte qu’ils parviennent à résoudre les problèmes posés par des chiffrements par
flot au faible coût d’implementation utilisables potentiellement dans les RFID.

Organisation

Ce résumé de thèse est organisé comme il suit. Dans la première section nous
décrivons les protocoles de sécurité les plus courants. Puis, dans la seconde section, les
protocoles ProbIP et EProbIP sont décrits, leurs différences sont mises en évidence.
En particulier nous montrons pourquoi EProbIP est plus sûr. Dans la Section 3 nous
décrivons et analysons le protocole d’identification anonyme Di Pietro-Molva. Puis,
dans la section 4, nous décrivons comment les systèmes de chiffrement par flot dédiés
aux implémentations matérielles légères, qui sont souvent utilisés dans les RFID,
peuvent être analysés grâce a des solveurs de problèmes SAT adaptés. Finalement,
nous concluons cette thèse.

131

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

A.2 Les protocoles RFID

Les protocoles RFID tentent de résoudre deux problématiques importantes :
l’identification privée et l’authentification. Nous allons diviser les protocoles selon
ces deux parties cruciales.

A.2.1 Identification

Le problème d’identification est le suivant : l’entité A souhaite signaler à l’entité
B, d’après un système de signe établi à l’avance, qu’elle est A. L’identification selon
le standard EPC fonctionne de la façon suivante : la puce EPC envoie son numéro
d’identification par un canal de radio. C’est bien une solution du problème de base,
néanmoins il permet de suivre la puce EPC et à la fois son soutien (même de loin)
contre un attaquant à l’écoute.

La solution idéale de ce problème est l’identification privée, dans laquelle une
puce EPC dévoile son identité au lecteur de sorte que personne d’autre ne puisse la
décoder. L’identification privée possède de nombreuses définitions. Une définition bien
connue a été forgée par Juels et al. [23]. Dans celle-ci, ils définissent une expérience
d’identification privée qui doit être gagnée par l’attaquant selon une probabilité non
négligeable afin qu’il s’avère que le protocole RFID d’identification privée ne protège
pas la vie privée et que la puce peuvent être suivie.

Nous distinguons quatre types différents de protocole RFID d’identification privée :
les types basés sur la théorie d’information, sur le hachage, sur l’arbre des clés et les
protocoles expérimentaux.

Protocoles de théorie d’information

Le meilleur exemple des protocoles de théorie d’information est le protocole à
la châıne de pseudonymes instauré par Juels [21]. Ce protocole fonctionne de telle
sorte que la puce RFID retient n numéros d’identification (ID) différents, et elle les
émet les uns après les autres en cas de demande d’identification. Dans la mesure où
la puce RFID rencontre un lecteur avec lequel elle parvient à créer une authenticité,
ils se mettent d’accord sur n ID qui peuvent être utilisés de nouveau. Le protocole
exige extrêmement peu de calculations, et il suffit n banques de mémoire pour
l’implementation. En revanche, le protocole recèle un problème, c’est que l’attaquant
a l’occasion d’entrer plusieurs fois (> n) en contact avec la puce et de cette façon, le
numéro d’identification de la puce ne sera pas inconnu après un certain temps, par
conséquent, il deviendra possible de suivre la puce.

Protocoles basés sur le hachage

L’exemple le plus connu des protocoles basés sur le hachage est le protocole OSK
établi par Ohkubo et al. [24]. Le protocole OSK fonctionne de la manière suivante :

1. La puce envoie une réponse d’identification : ai = G(si)

2. La puce met à jour son état : si+1 = H(si)

où G et H sont deux fonctions de hachage différentes qui peuvent être générées à
partir d’une même fonction de hachage, par exemple de la façon suivante : nous

132 A.2. LES PROTOCOLES RFID

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Racine
clés :{Ø}

Puces utilisant k1

Clés :{k1}

Feuille
clés :{k1, k1,1}

T1,1

Feuille
clés :{k1, k1,2}

T1,2

Puces utilisant k2

clés :{k2}

Feuille
clés :{k2, k2,1}

T2,1

Feuille
clés :{k2, k2,2}

T2,2

Fig. A.1 – Un exemple de l’arbre des clés de Molnar-Wagner. La facteur de branche-
ment de l’arbre est b deux et sa profondeur est également d deux. Il y a ainsi quatre
puces au total dans le système.

mettons ’1’ à la première entrée et ’0’ à l’autre. Ce protocole s’appelle forward-
secure, du moment que si l’attaquant connâıt n’importe quand l’état de la puce, il
ne parvient pas à en décoder les identifications anciennes. Le protocole sollicite du
lecteur de suivre l’état des puces et de mettre à jour l’état correspondant à la puce.
L’inconvénient du protocole se montre dans la mesure où l’attaquant identifie la puce
à plusieurs reprises. Dans ce cas-là, l’état de la puce est mis à jour tant de fois que le
lecteur doit mettre beaucoup de temps de le chercher.

À part le protocole OSK, il existe de nombreux protocoles basés sur le hachage
qui ont été, presque tous, développés à partir d’OSK. Entre autres, c’est YA-TRAP
de Tsudik [39], YA-TRAP+ et O-TRAP de Burmester et al. [8] et RIPP-FS de Conti
et al. [11].

Protocoles basés sur l’arbre des clés

Le fondement des protocoles basés sur l’arbre des clés est le protocole Molnar-
Wagner [26]. Ce protocole ordonne les puces dans un arbre des clés où les feuilles de
l’arbre sont les puces et une clé différente correspond à chaque branche. Une partie
des clés des puces se trouvant près de l’une des autres est identique, tandis que les
clés des puces se situant loin de l’une des autres ne sont pas ou à peine identiques.
Ce système de partage des clés (voir la Figure A.1.) est profitable, car le lecteur
peut identifier (et optionnellement authentifier) les puces en log n temps. Le partage
des clés aboutit, en revanche, au dévoilement des clés des puces intactes, vu que
certaines clés se trouvent dans plusieurs puces. Alors le dévoilement d’une puce (par
exemple par le biais de l’ouverture physique) peut entrâıner le dévoilement d’autres
puces. De cette manière, l’attaquant a la possibilité d’endommager l’identification
privée des puces qu’il n’a jamais ouvertes, voire, qu’il n’a jamais vues.

A.2. LES PROTOCOLES RFID 133

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Protocoles expérimentaux

Les protocoles expérimentaux sont établis sur ce que les conditions des puces
RFID et leurs modes de fonctionnement diffèrent de ce qui est habituel dans la
cryptographie à tel point que l’on a besoin de nouveaux protocoles jusqu’ici totalement
inconnus susceptibles de fournir une solution aux questions du domaine de recherche
très spécifique. Les deux exemples célèbres de tels protocoles sont LMAP de Peris et
al. [32] et DPM de Pietro et Molva [2].

L’avantage de ces protocoles est qu’ils sont de faible demande matérielle, par
conséquent, une puce RFID peut en contenir un. Leur désavantage, par contre, c’est
qu’ils ne s’avèrent pas toujours assez fiables : c’est ce qui est advenu à LMAP [1] et
à DPM [2].

A.2.2 Authentification

Bien que l’identification soit un problème de premier ordre attendant d’être
résolu par les protocoles RFID afin qu’ils puissent prendre de l’extension dans la
vie quotidienne, la capacité d’authentification des RFID pourrait être utilisable
plusieurs fois. Elle serait incontestablement apte à entraver l’extension de faux
médicaments et des contrefaçons des produits de luxe, ainsi qu’à assurer la réparation
des produits garantis sans besoin de ticket de caisse et de facture. Nous distingue
quatre protocoles d’authentification RFID différents : les protocoles appliquant le
chiffrement symétrique, les protocoles utilisant le chiffrement public, les protocoles
basés sur PUF et ceux basés sur LPN.

Protocoles appliquant le chiffrement symétrique

Dans la mesure où il y a un un chiffrement symétrique tel qu’AES n’exigeant
que 3500 GE [15] ou bien PRESENT [5] de Bogdanov et al., qui exige uniquement
1570, le problème de l’authentification peut être aisément résolu. C’est la raison
pour laquelle de nombreuses recherches se penchent sur les protocoles appliquant le
chiffrement symétrique de faible demande matérielle. Par exemple, le projet européen
NESSIE et eSTREAM, qui l’a développé, se préoccupent de ce sujet : Trivium [9] de
Canniere et Grain [19] de Hell et al. ont vu le jour dans le cadre du deuxième projet.

Protocoles utilisant le chiffrement public

L’utilisation du chiffrement publique aux RFID présente de multiples avantages,
entre autres, il devient possible de partager la partie publique de la clé à n’importe
qui, même aux entités en lesquelles le planificateur de système n’a pas de confiance
totale. Son inconvénient est, part contre, que ce protocole est de grande demande
matérielle. Cette grande demande matérielle se laisse corriger de deux façons : soit
nous appliquons des algorithmes standards avec des coupons utilisables juste une fois,
soit nous transformons l’algorithme afin qu’il puisse être plus facilement implémenté
aux RFID. Un exemple de la première solution est GPS [25] de McLoone et Robshaw
et un exemple de la deuxième est SQUASH [35] de Shamir.

134 A.2. LES PROTOCOLES RFID

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Famille de protocole d’authentification HB+

Le protocole HB+ basé sur le problème LPN (Learning Parity with Noise) [12] et
publié premièrement par Juels et Weis [22] a inspiré de nombreux protocoles [7, 27, 37].
Ce succès est dû au fait que le problème LPN peut être facilement analysé et que les
demandes matérielles de HB+ étaient faibles. En revanche, les demandes matérielles
ont augmenté avec le temps vu que les procédés d’attaque se sont également renforcés
contre le protocole [17] et contre le problème LPN [16, 40, 30].

Protocoles basés sur PUF

Le PUF, c’est-à-dire Physically Uncloneable Function, est un circuit dont la sortie
ne peut être définie à l’avance, car des retardements sont mis dans le circuit lors de
la fabrication et ils rendent le système imprévisible. Étant donné que la sortie ne
peut pas être modelées en fonction de l’entrée, le PUF fonctionne à l’instar d’une
fonction de hachage. Ce sont Bolotnyy et Gabriel qui ont lancé l’idée du PUF pour
les RFID [6], mais il n’a malheureusement pas été réalisé en nombre, c’est pourquoi
nous ne sommes pas en mesure de savoir s’il fonctionnait bien dans de plus grands
systèmes réels.

Tableau de comparaison

Ce tableau de comparaison des services de sécurité des lesdits protocoles se situe
dans le Tableau A.1. Il est intéressant de remarquer que, sauf le protocole basé sur
l’arbre des clés de Molnar-Wagner, les services de sécurité des protocoles RFID ne se
sont pas avérés fiables en dépit des attentes de leur inventeur. Dans la technologie
de sécurité, c’est habituel puisque les procédés d’attaque sont toujours en train de
progresser, ils ne seront jamais plus mauvais.

A.3 Noisy Secret Shuffling

Dans ce chapitre, nous allons présenter deux protocoles d’identification privée
qui peuvent être implémentés aux RFID et qui, en même temps, sont assez sécurisés
afin qu’une puce RFID et son propriétaire ne puissent pas être suivis. Le premier
protocole à présenter, le Probabilistic Identification Protocol (ProbIP), se sert d’une
clé K bit sur laquelle il renseigne le lecteur. Le lecteur, connaissant la clé de chaque
puce du système, est en mesure de deviner quelle puce a envoyé les informations,
tandis qu’un outsider en est incapable, vu qu’il ne connâıt pas la clé des puces du
système. Le deuxième protocole, l’Enhanced Probabilistic Identification Protocol
(EProbIP) présente des ressemblances avec le ProbIP, mais il fournit quelque fois
des informations divergentes au lecteur dans le but de tromper l’attaquant.

A.3.1 Probabilistic Identification Protocol

Le fonctionnement du Probabilistic Identification Protocol (ProbIP) se déroule
entre le lecteur RFID et la puce RFID précédant ainsi toutes les autres communica-
tions. Le déroulement du protocole est le suivant :

1. Le lecteur RFID envoie un message HELLO.

A.3. NOISY SECRET SHUFFLING 135

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Tab. A.1 – Aperçu des services de sécurité des lesdits protocoles RFID. Les services
de sécurité, qui se sont avérés défectueux, sont marqués par une étoile.

Protocole Unlinkable Untraceable Tag Reader
ident. ident. auth. auth.

ISO14443A coll.- Non Non Non Non
avoidance [20]

EPC coll.- Non Non Non Non
avoidance [14]

Pseudonym- Oui∗ Oui∗ Non Non
rotation [21]

ProbIP [10] Oui∗ Oui∗ Non Non
OSK [24] Oui∗ Oui∗ Oui Non
YA-TRAP [39] Oui∗ Oui∗ Oui Non
YA-TRAP+ [8] Oui∗ Oui∗ Oui Non
O-TRAP [8] Oui∗ Oui∗ Oui Non
RIPP-FS [11] Oui∗ Oui∗ Oui Oui
Molnar- Oui Oui Oui Oui
Wagner [26]

DPM [33] Oui∗ Oui∗ Oui Oui
SQUASH-0 [35] Non Non Oui∗ Non
WIPR [29] Non Non Oui Non
HB+ [22] Non Non Oui∗ Non
HB# [18] Non Non Oui∗ Non
PUF [6] Non Non Oui Non

2. Dès qu’elle a reçu le message HELLO, la puce RFID j (Tj) envoie le paquet P et
le message FINISHED. P est un paramètre de système et le paquet est une liste
de donnée de 2L de long, <a1, b1>, <a2, b2> . . . , <aL, bL>, où ai est un indice de
clé aléatoire ai

r← [1, K] ne se répétant pas dans un même paquet, et bi est un
bit aléatoire bi

r← {0, 1} de sorte que l’équation

L∑
i=1

[
kj[ai]⊕ bi

]
= L/2 (A.1)

soit satisfaite (L est un numéro pair). Comme l’addition est une opération
commutative, jusqu’à ce que les paires <ai, bi> ne changent pas, l’ordre des
paires peut se modifier. Ces paires sont marquées de la façon suivante : ai dans
la mesure où bi = 1 et āi si bi = 0.

3. Dès que le lecteur a reçu les paquets, il les envoie au système d’arrière-plan,
c’est-à-dire à B, qui calcule l’équation (A.1) pour chaque paquet et pour la clé
de chaque RFID. La clé correspondant à tous les paquets est probablement la
clé qui a été utilisé par la RFID, c’est pourquoi B peut dévoiler la puce RFID
appartenant aux paquets. B renvoie le numéro d’identification de la puce RFID
ainsi dévoilée au lecteur.

136 A.3. NOISY SECRET SHUFFLING

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Le nombre minimum de paquets

Le nombre de tous les paquets possibles est
(

2K
L

)
, du moment que ai provient

d’un ensemble de la taille K et que bi vient d’un ensemble de la taille 2. Le nombre
de paquets possibles correspondants à une clé donnée n’est que

(
K

L/2

)(
K−L/2

L/2

)
étant

donné que l’équation (A.1) doit être satisfaite et qu’il est impossible de répéter les
indices dans un paquet. La proportion de ces deux chiffres

R =

(
K

L/2

)(
K−L/2

L/2

)
(

2K
L

) (A.2)

est la probabilité de ce qu’un paquet choisi aléatoirement s’applique à la clé d’une
puce sélectionnée aléatoirement. Par exemple, dans la mesure où K = 400, L = 10,
alors R ≈ 0.232 .

Dans la mesure où le nombre des puces RFID est n, dans ce cas-là le “faux positif”
est probablement fp = n ∗Rp . Alors le nombre des paquets envoyés doit être :

P =

⌈
log(1/n ∗ fp)

log(R)

⌉
(A.3)

Ce qui, pour les paramètres L = 10, fp = 0.1 et n = 107, est P = d12.62e = 13. Si
autant de paquets ne s’avèrent pas suffisants, le protocole peut être réitéré.

Implémentation

Le protocole peut être facilement implémenté au système de fond, il n’y a besoin
que d’une capacité de processeur convenable. Ceci peut être résolu par des FPGA
aussi, qui peuvent rendre le système beaucoup plus rapide.

L’implémentation du protocole à une puce est également simple vu qu’elle ne
nécessite qu’un calcul presque négligeable et extrêmement peu de mémoire. Le seul défi
est lancé par le générateur de nombres aléatoires utilisé par le système pour générer les
paquets. Dans le même but, les Physically Unclonable Functions (PUFs) [6] peuvent
être appliqués. Ils se montrent idéaux pour générer des nombres aléatoires [28] sur
les puces RFID, vu qu’ils perçoivent les changements de l’environnement et en y
réagissant, mais pas d’une façon calculable, ils génèrent une sortie aléatoire.

Si nous calculons avec le paramètre K = 400, alors l’exigence ROM du protocole
sur la puce est 400-bit correspondant grosso modo à une porte 400 NOT. L’algorithme
de génération de paquets demande environs 100 GE (”Gate Equivalent”) et le
générateur de nombres aléatoires (PRNG) exige environ 700 GE, pour un total de
1200 GE d’espace sur le tag RFID.

A.3.2 L’analyse de sécurité du ProbIP

Ouafi et al. [31] ont prouvé avec succès que la sécurité du protocole ProbIP
peut être brisée de l’élimination de Gauss, dans la mesure où l’attaquant parvient à
rassembler suffisant de paquets. L’idée de l’attaque est que les paquets peuvent être

A.3. NOISY SECRET SHUFFLING 137

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

représentés de la façon suivante :

L∑
i=1

v1
i (K[i]⊕ b1i) = L/2

L∑
i=1

v2
i (K[i]⊕ b2i) = L/2

...
L∑

i=1

vl
i(K[i]⊕ bli) = L/2

où le nombre des paquets obtenus par l’attaquant est n, et v est la fonction d’indication
montrant si un bit de clé donné se trouve dans le paquet, et bi est est bit aléatoire
associé au bit de clé. S’il y a une telle représentation, alors l’élimination de Gauss
n’exige que 7 ·mlog27 opérations dans la mesure où nous utilisons l’algorithme de
Strassen [38] où la taille de la matrice est m.

A.3.3 Le protocole EProbIP

Le protocole Error-Intoroducing Probabilistic Identificaiton protocol (EProbIP)
est un tel protocol qui se base sur le ProbIP, mais il le protège de l’attaque publiée
par Ouafi et al. [31] de telle sorte que la puce RFID envoi de temps en temps des
paquets aléatoires. Cette modification change dans une large mesure le degré de
sécurité assuré par le protocole.

Les paquets aléatoires dans le protocole EProbIP ont la même apparence que les
paquets normaux sauf que la donnée qu’ils renferment ne satisfait pas nécessairement
l’équation (A.1.), du moment que les indices ai, de même que les bits bi ont été
sélectionnés de manière aléatoire en veillant à ce que les indices ne se répètent pas.
Les paquets envoyés aléatoirement s’appellent paquets Noise, et les paquets normaux
se nomment paquets Valid. La probabilité de l’occurrence des paquets Noise peut
être réglée, elle est marquée par err.

Les faux paquets n’occasionnent pas de problème au serveur de fond B : par
rapport au ProbIP, la différence est que le serveur de fond est obligé de tenir compte
de plus d’informations. Il doit compter le nombre des paquets correspondant aux
clés des puces. La puce, à la clé de laquelle les plus de paquets ont correspondu, est
celle qui a très probablement effectué l’identification.

Le nombre minimum de paquets

Dans ce chapitre, nous allons calculer le nombre minimum de paquets qui doivent
être envoyés par la puce afin que le lecteur ait la chance de l’identifier. Vu que le
protocole envoi également des paquets sélectionnés aléatoirement, la probabilité de
l’identification ne sera jamais 100%, nous avons néanmoins la possibilité d’approcher
à volonté de 100%. Ceci consiste dans l’envoi de plusieurs paquets, comme nous
allons le voir. Sans éclairer tous les détails, la probabilité que du paquet P , envoyé
par la puce, exactement x satisfasse l’équation est la suivante :

138 A.3. NOISY SECRET SHUFFLING

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

fit send(P, x) =
x∑

i=0

[
Bi(P, x− i, 1− err) ∗ Bi(P − (x− i), i, R)

]

où

R =

(
K

L/2

)(
K−L/2

L/2

)
(

K
L

)
2L

Par conséquent, la chance qu’une fausse puce se situe plus en haut dans l’hiérarchie
que la puce recherchée est la suivante :

probrank(P, lev) = 1−
(
BiC(P, lev − 1, R)

)n−1

La chance que la puce recherchée ne se trouve pas au sommet de l’hiérarchie est donc
la suivante :

fp :=
P∑

i=0

[
probrank(P, i) ∗ fit send(P, i)

]

Par exemple, dans la mesure où nous calculons avec les paramètres K = 400, L = 10,
P = 20 et err = 0.1, dans ce cas-là fp = 0.086 . Par conséquent, il y a 91% de chance
que, si la puce a envoyé 20 paquets lors de l’identification, elle soit tout en haut, au
sommet de l’hiérarchie établie par le lecteur et de cette façon, elle sera exactement
identifiée. Pour comparer, dans le protocole ProbIP (alors lorsque err = 0) un tel
fp n’exige que 13 paquets. Nous avons besoin de 7 paquets de plus vu qu’il est fort
possible que la puce envoie également de faux paquets et cela doit être compensé.

A.3.4 L’analyse de sécurité de l’EProbIP

La sécurité de l’EProbIP a été examinée d’après “Privacy Experiment”, l’expérience
d’identification privée, décrite par Juels et Weis [23]. Dans cette expérience, l’atta-
quant se voit avoir le droit d’ouvrir certaines puces et certains lecteurs et de retenir
leur contenu. Nous allons choisir deux puces qui ne sont pas connues par l’attaquant.
L’attaquant devra distinguer les deux puces après un certain nombre d’expériences
d’identification avec une probabilité non négligeable de plus de 50%.

L’EProbIP peut être le plus facilement brisé de telle sorte que nous convertissons
un nombre convenant de paquets à la notation CNF, et nous confions à l’algorithme
MaxSAT de retrouver la combination de bit de clé contenant le moins de faux
paquets. Dans la mesure où nous avons donné assez de paquets à l’algorithme
MaxSAT, il retrouve la clé K de la puce. Le problème de ce procédé c’est qu’il exige
beaucoup de temps et qu’il ne se sert pas de la possibilité que les puces peuvent être
interrogées en nombre : l’algorithme MaxSAT fonctionne plus lentement s’il possède
plus d’informations.

Afin que l’attaquant puisse se servir de ce que les puces peuvent être interrogées
à maintes reprises, nous avons développé un algorithme SAT spécial. Celui-ci se base

A.3. NOISY SECRET SHUFFLING 139

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

No. de paquets K = 100 K = 200 K = 400 K = 1000

1 · Patt 1.15e15 s 2.53e34 s 7.33e72 s 1.78e188 s
9 · Patt 1.47e6 s 3.16e14 s 1.47e31 s 1.47e82 s

27 · Patt 5.08e4 s 3.87e10 s 2.25e22 s 4.43e57 s
64 · Patt 2.94e4 s 1.77e10 s 6.45e21 s 3.10e56 s

192 · Patt 1.55e4 s 8.96e8 s 2.99e18 s 1.11e47 s
576 · Patt 1.80e4 s 6.29e6 s 7.72e11 s 1.43e27 s

Tab. A.2 – Le tableau indique la rapidité avec laquelle l’EProbIP peut être brisé
par l’algorithme SAT en cas d’utilisation d’un ordinateur Pentium D@3GHz. Les
paramètres utilisés étaient L = 5 et fp ≈ 90. Patt représente le nombre de paquets dont
l’attaquant a besoin dans le but de briser le système. Le tableau fait la démonstration
de la capacité de l’algorithme SAT modifié à profiter de la quantité des paquets émis
par la puce à l’inverse de l’algorithme MaxSat

sur le système MiniSat [13], mais il le développe encore de telle sorte qu’il soit plus
ferme : si un paquet donné ne correspond pas à une combination de clé donnée, il ne
jette pas la combination de clé, mais il calcule la quantité de paquets non conformes,
et si cette qualité est inférieure à une limite, il ne s’intéresse plus à ce problème. Ainsi,
il devient capable de fonctionner aussi vite que les algorithmes SAT sur un problème
qui exigerait d’ailleurs un algorithme MaxSAT. La rapidité de bris présentée par ce
procédé est résumée dans le Tableau A.2.

A.3.5 Conclusion

Nous avons présenté la façon dont il est possible de créer un protocole d’identifi-
cation privée gardant le droit à la vie privée du propriétaire, mais qui, à la fois, est
apte à être implémenté aux RFID. Il est évident aussi qu’il est relativement difficile
de créer un tel protocole : la première version du protocole présenté ne s’est pas
avérée fiable comme Ouafi et al.[31] l’ont démontré. Le nouveau protocole, l’EProbIP
fournit, en revanche, une solution à la méthode d’attaque publié par Ouafi et al., et
il rend le système plus fiable contre des attaquants s’efforçant de la façon présentée.

A.4 L’analyse du protocole d’authentification et

d’identification RFID de Di Pietro et Molva

Dans ce chapitre, nous allons nous pencher de plus près sur le protocole d’authenti-
fication et d’identification RFID de Di Pietro et Molva [33], qui résout l’identification
des RFID d’une façon radicalement nouvelle de sorte que les demandes matérielles
restent faibles. Nous allons nous focaliser dans ce chapitre sur la partie du protocole
consacrée à l’identification, vu que sa partie vouée à l’authentification applique la
fonction SHA célèbre par sa fiabilité qu’il est impossible de briser de la technologie
actuellement connue.

140 A.4. L’ANALYSE DU PROTOCOLE D’AUTHENTIFICATION ET
D’IDENTIFICATION RFID DE DI PIETRO ET MOLVA

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

A.4.1 Le protocole Di Pietro-Molva

Pour l’identification privée, le protocole utilise la fonction DPM . L’entrée de la
DPM est l bit où l est divisible en 3, et sa sortie est 1 bit. La DPM est définie par
l’équation suivante :

DPM(x) =
l/3⊕
i=0

M(x[3i], x[3i+ 1], x[3i+ 2]) (A.4)

où M est la fonction de majorité : son entrée est 3 bits, sa sortie est 1 bit. La fonction
M constat s’il y a plus de 1 dans l’entrée que 0.

La partie du protocole consacrée à l’identification privée est la suivante :

1. Rj envoie son IDj à la puce

2. Ti calcule ki,j = h(ki||IDj||ki). Ensuite, il génère une fréquence des bits de q
l bit aléatoire, rp (p = 1 . . . q). Par la suite, il envoie q αp, où αp = rp ⊕ ki,j

et il envoie le vecteur de q bit de long, V , qui a été généré de cette manière :
V [p] = DPM(rp)

3. Rj calcule DPM(αp ⊕ ki,j) sur toutes les clés ki,j qui sont dans sa base de
données, et il le compare avec V [p]. Le protocole appelle ceci : Lookup Process.
La clé ki,j convenant à chaque paire (αp, V [p]), p = 1 . . . n est ce qui a été
utilisée par la puce.

A.4.2 Équivalences de clés

Divisons la clé ki,j en blocs de clé de 3 bits de long, que l’on va désormais
nommer des blocs. Si nous invertissons un bloc pair, le lecteur ne sera pas capable
de distinguer la clé de la clé originale, étant donné que le lecteur n’applique que
des paires (αp, V [p]) pour la distinction. C’est parce que V [p] = DPM(αp ⊕ ki,j) =
DPM(αp⊕ ki,j⊕inversions) et ainsi, le “Lookup Process” ne dépendra pas de ce que
les blocs ont été inversés. Un exemple de l’équivalences de clés est : ki,j =[001 000

100]≈[110 000 011]. Les équivalences de clés signifient que chaque clé de l de long
fait partie d’un groupe d’équivalence de clés de

∑b(l/3)/2c
i=0

(
l/3
2i

)
= 2l/3−1.

Les équivalences de clés comportent de nombreux inconvénients pour le protocoles.
D’une part, l’attaquant ne doit pas déchiffrer tout la taille de clé, mais il lui suffit
de déchiffrer les deux tiers de la clé, le reste n’a pas d’importance du point de
vue de l’identification privée. D’autre part, le lecteur est incapable dans certains
cas de distinguer deux puces RFID de l’une de l’autre même s’il effectue plusieurs
identifications sur les puces. C’est une faute qui rend le système inapproprié pour un
grand nombre d’utilisation, vu que la fonction essentielle de la puce RFID se blesse
ainsi.

A.4.3 Remarques en relation avec le deuxième lemme

Dans l’article original, le troisième lemme affirme qu’avec un r choisi aléatoirement
la probabilité que DPM(r) = 1 soit exactement 0.5 et que DPM(r) = 0 soit
également 0.5. Appliquant ce lemme, les auteurs ont conclu dans le deuxième lemme
que si q donné est une paire choisie d’une manière aléatoire (αp, V [p]), la probabilité

A.4. L’ANALYSE DU PROTOCOLE D’AUTHENTIFICATION ET
D’IDENTIFICATION RFID DE DI PIETRO ET MOLVA

141

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Fig. A.2 – Le nombre moyen des paires redondantes (constituant une tautologie) en
cas de paires non équivalentes et de tailles de clé différentes.

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

6
8

10
12

14
16

18
20 22 2

4
6

8
10

12
14

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Taille de clé (l)
No. de

paires (q)

Le no. de
paires redon-

dantes (z)

qu’au moins une clé survive au “Lookup Process” est moins que n(1/2)q. En revanche,
afin que cela s’avère vrai, la distribution du reste des clés après une paire (αp, V [p])
aurait dû rester également aléatoire. Mais ce n’est pas ainsi, puisque si l’on utilise
deux fois la même paire, les mêmes clés restent sur la liste des puces possibles, comme
si l’on avait utilisé une des deux.

Cette remarque laisse penser que le nombre minimum de paires (αp, V [p]) calculé
par les auteurs ne suffit pas souvent. Nous avons calculé le nombre moyen des paires
redondantes (constituant une tautologie), et nous avons parvenus à l’image de la
Figure A.2.

A.4.4 Retrouver ki,j

Dans ce chapitre, nous allons présenter une méthode d’attaque qui retrouvera ki,j .

Étant donné que la clé de la puce est toujours masquée par IDj du lecteur (vu que
ki,j = h(ki||IDj||ki)), l’attaquant ne peut briser la sécurité de la puce que si la puce
communique avec un certain lecteur. Du moment qu’il y besoin de la clé ki,j pour
l’identification tant de la puce que du lecteur, dans la mesure où l’attaquant entre
en possession de cette clé, il devient capable d’authentifier vers la puce et le lecteur.

L’attaque Man-in-the-middle

Il est possible de lancer une attaque man-in-the-middle (MiM) contre le proto-
cole. Lors de cette attaque, l’attaquant peut s’informer à l’aide de ki,j en utilisant
l’information si l’authentification effectuée après l’identification a réussi. L’attaque
profite de ce qu’à l’exception de α1 aucun αp n’est authentifié : dans la mesure où
l’attaquant modifie α2 en α′2 et “Lookup Process” retrouve quand même la clé ki,j,
alors dans ce cas-là DPM(ki,j ⊕ α′p) = V [p] de telle sorte que, soit l’attaquant n’a
inversé la sortie d’aucune fonction de majorité (M) dans DPM , soit il a inversé un
sortie paire. En revanche, si DPM(ki,j ⊕ α′p) = V [p], l’authentification ne réussira
pas, car le lecteur ne retrouvera pas la clé ki,j sous “Lookup Process”, et dans ce
cas-là l’attaquant peut être sûr d’avoir inversé la sortie de nombre impair de fonctions
de majorité dans DPM .

Au lieu de changer α1, l’attaquant transformera α2 de telle sorte qu’il inversera

142 A.4. L’ANALYSE DU PROTOCOLE D’AUTHENTIFICATION ET
D’IDENTIFICATION RFID DE DI PIETRO ET MOLVA

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Tab. A.3 – Le tableau représente les conclusions qui peuvent être déduites par
l’attaquant s’il modifie les paquets du protocole lors de l’envoi. L’attaquant ne
doit changer que le deuxième ou le troisième bit du bloc α2 et qu’observer si
l’authentification réussit.

Bit Bloc α2[x . . . x+ 2] original
inversé Auth 000 001

α2[x+ 2] X ki,j[x] = ki,j[x+ 1] ki,j[x] = ki,j[x+ 1]
α2[x+ 2] × ki,j[x] 6= ki,j[x+ 1] ki,j[x] 6= ki,j[x+ 1]
α2[x+ 1] X ki,j[x] = ki,j[x+ 2] ki,j[x] 6= ki,j[x+ 2]
α2[x+ 1] × ki,j[x] 6= ki,j[x+ 2] ki,j[x] = ki,j[x+ 2]

Bloc α2[x . . . x+ 2] original
010 100

α2[x+ 2] X ki,j[x] 6= ki,j[x+ 1] ki,j[x] 6= ki,j[x+ 1]
α2[x+ 2] × ki,j[x] = ki,j[x+ 1] ki,j[x] = ki,j[x+ 1]
α2[x+ 1] X ki,j[x] = ki,j[x+ 2] ki,j[x] 6= ki,j[x+ 2]
α2[x+ 1] × ki,j[x] 6= ki,j[x+ 2] ki,j[x] = ki,j[x+ 2]

un certain bit (par exemple le deuxième et le troisième), et il observera si l’authentifi-
cation se produit. Chaque bloc α2 parviendra à une conclusion différente : le Tableau
A.3. énumère toutes les conclusions envisageables qui peuvent être tirées à chaque
bloc α2 dans la mesure où l’attaquant a inversé le deuxième ou le troisième bit.

Utilisant le Tableau A.3. l’attaquant n’a besoin que de deux déroulements de
protocole afin de déchiffrer le contenu d’un bloc de telle sorte que la puce puisse être
identifiée. C’est-à-dire que par exemple l’identification privée l = 81 peut être tout à
fait brisée seulement pendant le déroulement de 54 protocoles.

De la façon présentée, l’attaquant n’arrive à briser que les deux-tiers de la clé, le
reste se brise par une simple méthode d’attaque intitulé “brute force” qui n’exige
que 2K/3 opérations. En cas de taille de clé normale (par exemple une RFID possède
généralement des clés de 80 bits de long), cela ne demande que peu de temps, avec
un ordinateur moderne, il ne faut compter qu’avec quelques secondes.

A.4.5 Conclusion

Le protocole d’identification et d’authentification Di Pietro et Molva peut être
brisé par un attaquant très facilement à travers étonnamment peu de tentatives
d’attaque. L’attaque devient possible du fait que la fonction DPM utilisée par le
protocole d’identification n’a pas été analysé d’une manière suffisante et qu’elle
dispose d’une faute entrâınant deux problèmes différents. D’un côté, les puces ne
peuvent pas être toujours distinguées l’une de l’autre, de l’autre côté, un attaquant
malveillant a la possibilité d’en servir pour briser la clé. Ce protocole pourrait être
amélioré de telle sorte que l’on substitue la fonction DPM à une fonction pouvant
être aussi simplement implémentée, mais qui s’avère plus fiable au niveau de la
cryptographie.

A.4. L’ANALYSE DU PROTOCOLE D’AUTHENTIFICATION ET
D’IDENTIFICATION RFID DE DI PIETRO ET MOLVA

143

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

A.5 L’application des algorithmes SAT pour bri-

ser les chiffrements par flot

Les systèmes utilisant les nouveaux primitifs de cryptographie jusqu’ici inconnus
peuvent être brisés avec une grande probabilité d’après ce que l’on a présenté jusqu’à
ce chapitre. Pour éviter cela, nous allons analyser les primitifs de cryptographie bien
connus ayant une faible demande matérielle pour pouvoir prendre place sur une puce
RFID. En raison de ce qu’ils utilisent une construction connue depuis longtemps, ils
s’analysent plus facilement.

Le but de ce chapitre est de rapprocher les algorithmes SAT de la cryptogra-
phie et de rapprocher la description des chiffrements par flot des algorithmes SAT.
Par conséquent, les résultats de ces deux domaines de recherches deviennent plus
facilement utilisables.

A.5.1 L’adaptation des algorithmes SAT à l’environnement
des chiffrements par flot

Le problème des clauses XOR

Les chiffrement par flot utilisent dans une large mesure la fonction XOR. Ces
fonctions XOR, lorsque l’on les convertit à la notation CNF connue par les algorithmes
SAT, seront de la taille exponentielle : elle se convertissent exactement à 2len−1

clauses, dans la mesure où la longueur de la XOR originale était len. Rappelons
que ce problème a été résolu de plusieurs façons. Le travail purement théorique de
Massacci [4, Sect. 9] fournit une solution complète au problèmes des clauses XOR.
Cette solution purement théorique n’a malheureusement jamais été implémentée.
Nous tentons de remplir ce vide.

Nous avons complété l’algorithme SAT MiniSat [13] par des clauses XOR de telle
sorte que nous avons laissé toutes les fonctions du MiniSat intactes. Nous n’avons
complété que la fonction “propagate” de telle sorte qu’elle soit capable de traiter les
clauses XOR aussi. Nous sommes parvenus à ce que la clause XOR se comporte dans
tous les cas telle une clause normale. Par contre, si elle provoque une propagation ou
un conflit, elle change de telle sorte qu’elle ait l’apparence de la clause de 2len−1 qui
a causé la propagation ou le conflit.

Par exemple la clause XOR a⊕ b⊕ c représente toutes ces clauses

a ∨ ¬b ∨ ¬c (1) ¬a ∨ ¬b ∨ c (2)
a ∨ b ∨ c (3) ¬a ∨ b ∨ ¬c (4)

et elle se modifie en utilisant polymorphisme de C++ afin qu’elle corresponde à la
situation donnée.

L’analyse du déroulement de l’algorithme SAT

L’algorithme SAT effectue extrêmement beaucoup d’opérations pendant très
peu de temps. Cela provoque le problème suivant : le déroulement de l’algorithme
ne peut pas être suivi, et cela rend plus difficile à faire des analyses postérieures
sur le temps trop long de la recherche. Afin de résoudre ce problème, nous avons

144 A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]

 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]
 s[103]
 s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]
 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]

 s[100]
 s[60]

 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]

 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]

 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]

 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]

 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]

 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]

 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]

 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]

 s[104]
 s[60]

 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]

 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]

 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]

 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

Fig. A.3 – Visualisation d’un arbre de recherche ayant cherché et retrouvé l’état de
l’algorithme de chiffrement Crypto-1. L’arbre se lit de gauche à droit et de haut en
bas. Le premier conflit est le pentagone régulier qui se trouve à l’extrémité de gauche
et de bas. La solution recherchée est le cercle se situant à l’extrémité de droite et de
bas.

modifié l’algorithme SAT de telle sorte qu’il soit capable de créer un arbre de
recherche pendant qu’il cherche la solution et que parallèlement à cela, il établisse
des statistiques sur son déroulement.

Bien qu’il y ait eu jusqu’ici aussi des compléments faisant des analyses dynamiques
pour l’algorithme MiniSat [36], ils ne pouvait pas se servir de l’information du
problème original, soit l’ensemble des fonctions et des variables. Nous avons transformé
l’algorithme de telle sorte que nous allons nommer les variables et les fonctions qui
se représentent dans l’arbre de recherche. Il s’ensuit que l’arbre de recherche devient
plus clair et plus interprétable. Un arbre de recherche généré par l’algorithme modifié
se trouve dans la Figure A.3.

L’algorithme rassemble pendant la recherche les statistiques suivantes :
– Statistiques des arbres de recherche. Le nombre de branches, la profondeur

moyenne d’arbre, la quantité moyenne de bifurcation de branches.
– Statistiques des clauses. La liste des clauses les plus actives. Cette liste permet

d’aider à retrouver les clauses qui sont les plus importantes pour la solution.
– Statistiques variables. La liste des clauses dont les variables ont été le plus

souvent assignées lors du déroulement d’algorithme SAT. Cette liste contribue
à retrouver les variables qui sont les plus importantes du point de vue de la
solution.

L’algorithme établit également des statistiques illustrant la distribution de la
profondeur d’arbre qui peuvent être traitées par le logiciel “gnuplot” aussi. La
distribution de la profondeur d’arbre est illustrée dans la Figure A.4.

A.5.2 Adaptation de la représentation de l’algorithme de
chiffrement

La bonne représentation des chiffrements par flot dans les clauses régulières et
XOR est une démarche importante du bris des algorithmes de chiffrement [3, Sect.
8]. Dans ce chapitre, nous allons briser les chiffrements par flot de sorte que nous
allons dévoiler leur état – l’algorithme SAT va donc chercher l’état de l’algorithme
de chiffrement.

A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

145

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

0
200
400
600
800

1000
1200
1400

0 100 200 300 400 500

N
o.

of
b
ra

n
ch

es

Branch depth

0

500

1000

1500

2000

2500

0 100 200 300 400 500 620

N
o.

of
b
ra

n
ch

es

Branch depth

Fig. A.4 – La statistique de la profondeur d’arbre de l’arbre de recherche lors du
treizième et seizième redémarrage pendant que l’algorithme SAT était à la recherche
des états du chiffrement par flot. Les distributions de la profondeur d’arbre des deux
recherches se correspondent.

La représentation du circuit logique

La représentation du circuit logique sert à nous fournir une image globale sur la
façon dont l’algorithme de chiffrement est encodé du pont de vue de l’algorithme
SAT. Les parties du circuit logique sont les bits d’état de l’algorithme de chiffrement,
les fonctions de mise à jour d’état et les fonctions de sortie. Un exemple du circuit
logique se trouve dans la Figure A.5. Les fonctions sont indiquées par des hexagones,
et les bits d’état sont représentés par les carrés.

La profondeur du bit de sorti est le nombre des fonctions qui doit être calculé par
l’algorithme SAT afin qu’il parvienne des bits d’état au bit de sortie. Par exemple
dans la Figure A.5, la profondeur du bit de sortie est une, tandis que la profondeur
du quatrième bit de sortie est quatre. Étant donné que l’algorithme tente de dévoiler
les bits d’état et qu’il se dirige vers les bits de sortie, la profondeur des bits de sortie
est un facteur très important de la rapidité de l’algorithme.

Les fonctions (marquées par des hexagones dans la figure) doivent être dans tous
les cas calculées par l’algorithme SAT lorsqu’il a besoin de leur sortie. C’est-à-dire
que l’encodage des fonctions (par exemple, par des clauses XOR ou des tables de
Karnaugh etc.) n’est pas une partie négligeables du circuit logique. Il faut diminuer sa
complexité au plus possible, éventuellement par des solutions hybrides (par exemple
l’ensemble de clause XOR et de table de Karnaugh).

Finalement, comme l’algorithme SAT fixe d’abord les bits d’état et il se dirige
de ceux-ci vers les bits de sortie, il est exceptionnellement important que les bits de
sortie dépendent de très peu de bits d’état. En effet, s’ils dépendent d’une multitude
de bits d’état, l’algorithme se voit dans l’obligation de fixer beaucoup de bits d’état

146 A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Fig. A.5 – La représentation du circuit logique d’un chiffrement par flot imaginaire

fe
ed

ba
ck

fu
nc

. 4
8

st
at

e
48

fa
 [3

6,
45

,4
6,

48
]

st
at

e
47

fe
ed

ba
ck

fu
nc

. 5
0

fe
ed

ba
ck

fu
nc

. 5
1

fe
ed

ba
ck

fu
nc

. 5
2

fa
 [3

5,
44

,4
5,

47
]

fa
 [3

7,
46

,4
7,

49
]

st
at

e
46

fe
ed

ba
ck

fu
nc

. 4
9

fa
 [3

4,
43

,4
4,

46
]

st
at

e
43

fa
 [3

3,
42

,4
3,

45
]

st
at

e
42

st
at

e
41

st
at

e
30

fb
 [2

7,
28

,3
0,

32
]

fb
 [2

9,
30

,3
2,

34
]

fb
 [3

0,
31

,3
3,

35
]

st
at

e
26

fb
 [1

7,
21

,2
3,

26
]

fb
 [2

0,
24

,2
6,

29
]

st
at

e
23

fb
 [1

9,
23

,2
5,

28
]

st
at

e
22

fb
 [1

6,
20

,2
2,

25
]

fb
 [1

8,
22

,2
4,

27
]

st
at

e
16

fb
 [9

,1
3,

15
,1

6]

fb
 [1

0,
14

,1
6,

17
]

st
at

e
8

fb
 [8

,1
2,

14
,1

5]

fa
 [4

,5
,7

,8
]

fa
 [5

,6
,8

,9
]

st
at

e
7

fb
 [7

,1
1,

13
,1

4]

fa
 [3

,4
,6

,7
]

st
at

e
6

fa
 [2

,3
,5

,6
]

st
at

e
3

st
at

e
2

fa
 [1

,2
,4

,5
]

st
at

e
0

st
at

e
49

st
at

e
44

st
at

e
31

fb
 [2

8,
29

,3
1,

33
]

fb
 [3

1,
32

,3
4,

36
]

st
at

e
27

st
at

e
24

st
at

e
17

fb
 [1

1,
15

,1
7,

18
]

st
at

e
9

st
at

e
4

st
at

e
1

st
at

e
50

st
at

e
45

st
at

e
32

st
at

e
28

st
at

e
25

st
at

e
18

st
at

e
10

st
at

e
5

st
at

e
51

st
at

e
33

st
at

e
29

st
at

e
19

st
at

e
11

st
at

e
52

st
at

e
34

st
at

e
20

st
at

e
12

st
at

e
13

st
at

e
14

st
at

e
15

st
at

e
21

st
at

e
35

st
at

e
36

st
at

e
37

fa
 [1

,2
,4

,5
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 0

fb
 [7

,1
1,

13
,1

4]

in
te

rn
al

 v
ar

fb
 [1

6,
20

,2
2,

25
]

in
te

rn
al

 v
ar

fb
 [2

7,
28

,3
0,

32
]

in
te

rn
al

 v
ar

fa
 [3

3,
42

,4
3,

45
]

in
te

rn
al

 v
ar

fa
 [2

,3
,5

,6
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 1

fb
 [8

,1
2,

14
,1

5]

in
te

rn
al

 v
ar

fb
 [1

7,
21

,2
3,

26
]

in
te

rn
al

 v
ar

fb
 [2

8,
29

,3
1,

33
]

in
te

rn
al

 v
ar

fa
 [3

4,
43

,4
4,

46
]

in
te

rn
al

 v
ar

fa
 [3

,4
,6

,7
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 2

fb
 [9

,1
3,

15
,1

6]

in
te

rn
al

 v
ar

fb
 [1

8,
22

,2
4,

27
]

in
te

rn
al

 v
ar

fb
 [2

9,
30

,3
2,

34
]

in
te

rn
al

 v
ar

fa
 [3

5,
44

,4
5,

47
]

in
te

rn
al

 v
ar

fa
 [4

,5
,7

,8
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 3

fb
 [1

0,
14

,1
6,

17
]

in
te

rn
al

 v
ar

fb
 [1

9,
23

,2
5,

28
]

in
te

rn
al

 v
ar

fb
 [3

0,
31

,3
3,

35
]

in
te

rn
al

 v
ar

fa
 [3

6,
45

,4
6,

48
]

in
te

rn
al

 v
ar

fa
 [5

,6
,8

,9
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 4

fb
 [1

1,
15

,1
7,

18
]

in
te

rn
al

 v
ar

fb
 [2

0,
24

,2
6,

29
]

in
te

rn
al

 v
ar

fb
 [3

1,
32

,3
4,

36
]

in
te

rn
al

 v
ar

fa
 [3

7,
46

,4
7,

49
]

in
te

rn
al

 v
ar

Fig. A.6 – La représentation graphique du circuit logique du chiffrement par flot
HiTag2. Les fonctions sont représentées par des hexagones, les bits d’état sont indiqués
par des carrés. Les bits de sortie connus sont représentés par les cinq hexagones se
situant en haut de la figure, les cinq fonctions de mise à jour d’état se trouvent à
droite, en bas.

avant de réaliser les avoir fixés sur une mauvaise combination de bit et il n’a d’autre
possibilité que recommencer une partie du calcul. Le nombre indiquant la quantité
de bits d’entrée dont un bit de sortie dépend s’appelle nombre de dépendance.

En fin de compte, le but est de diminuer au minimum la profondeur du circuit
logique, la taille des nombres de dépendance et la complexité de la description des
fonctions en réduisant ainsi le travail de l’algorithme SAT.

Création de la représentation du circuit logique

Dans le but de pouvoir analyser l’utilité de la représentation du circuit logique
mentionnée ci-dessus, nous avons implémenté une génératrice du circuit logique dans
l’algorithme SAT MiniSat. Le circuit logique ainsi fait peut être illustré par le logiciel
Graphviz, ou bien il est possible d’en établir des statistiques permettant d’aider à
illustrer et diminuer les variables mentionnées (nombre de dépendance, profondeur,
etc.). À titre indicatif, il y a la représentation du circuit logique du chiffrement par
flot HiTag2 dans la Figure A.6.

La représentation du circuit logique a également permis d’effectuer une analyse

A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

147

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

Tab. A.4 – Le temps nécessaire pour résoudre les chiffrements Crypto-1, HiTag2, et
Bivium

Vanilla Karnaugh Karnaugh and xor-clause
MiniSat optimization optimizations

Crypto-1 500 s 72 s 40 s
HiTag2 217.8 s 215 s 214.5 s
Bivium 236.7 s 236.7 s 236.5 s

de l’arbre de dépendance. L’arbre de dépendance est destiné à éviter que l’on ajoute
à la représentation des fonctions qui ne dépendent pas des bits de sortie, c’est-à-dire
qui n’aident pas à retrouver les bits d’état. Naturellement, de telles fonctions peuvent
être enlevées sans problème de la représentation et cela rend l’algorithme SAT plus
rapide. Un exemple simple pour une telle fonction est la dernière fonction de mise à
jour d’état de la Figure A.5. La sortie de cette fonction n’est reliée à aucun bit de
sortie, elle est ainsi inutile.

A.5.3 Attaques réalisées

L’algorithme SAT augmenté est apte à résoudre une multitude de chiffrements
par flots. Les attaques contre trois algorithmes de chiffrement ont été implémentées :
contre HiTag2, Crypto-1 et Bivium. Le tableau comparatif de ces attaques se trouve
dans A.4.

Crypto-1

L’algorithme de chiffrement par flot Crypto-1 est un LFSR possédant un état
de 48 bits et il est relié à une fonction de sortie non-linéaire. Le chiffrement par flot
s’utilise à la carte Mifare Classic, dont on se sert partout dans le monde dans le
transport en commun afin de contrôler les entrées (par exemple à Londrès et à Rio
de Janeiro).

Comme la Figure A.7 montre, Crypto-1 utilise un LFSR de 48 bits, dont 18 bits
d’état sont examinés par la fonction de mise à jour d’état. La fonction de sortie se
compose de plusieurs petites fonctions en formant ainsi une fonction plus complexe
et d’une plus grande taille.

Sur un ordinateur de bureau typique, si nous n’utilisons pas un processeur multi-
cœur, et dans la mesure où r = 56 bits sont disponibles, l’attaque se basant sur
l’algorithme SAT présenté par nous retrouve l’état de l’algorithme de chiffrement en
40 secondes.

HiTag2

Le chiffrement par flot HiTag2 ressemble beaucoup à Crypto-1. La seule différence
est que la fonction de sortie n’est pas pareille et surtout que les entrées de la fonction
de sortie ne sont pas symétriques. Bien que cette différence soit petite, elle a de la
première importance : l’attaque se basant sur l’algorithme SAT présenté par nous est
plus lente à l’égard de cet algorithme, mais elle ne demande que six heures et demie.

148 A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

0 11 12 15 17 18 24 27 29 … 37 42 43 45 10 13 14 19 21 23 25 31 33 35 39 41 47

fb
4 fa

4 fa
4 fb

4 fa
4

fc
5 = 0xEC57E80A!

fa
4 = 0x9E98 = (a+b)(c+1)(a+d)+(b+1)c+a

fb
4 = 0xB48E = (a+c)(a+b+d)+(a+b)cd+b

key stream

NXP Mifare Crypto-1 Cipher

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

 0!!!!!!!!! !!!!!!!!!!!! !!! ! 1!! !!! !!!!!!! !!! ! 2 !! !!!!! !!! !!! !3! !!!!!!!! !! ! 4

5 9

Fig. A.7 – NXP Mifare Classic Le chiffrement par flot Crypto-1. La fonction de
sortie se compose du réseau de petites fonctions (de f 4

a , f 4
b et f 5

c).

0 2 3 6 7 8 16 22 23 26 30 41 42 43 46 47 1 4 5 11 13 14 20 25 27 28 32 33 45

fa
4 fb

4 fb
4 fb

4 fa
4

fc
5 = 0x7907287B

fa
4 = 0x2C79 = abc+ac+ad+bc+a+b+d+1

fb
4 = 0x6671 = abd+acd+bcd+ab+ac+bc+a+b+d+1

key stream

NXP Hitag2 Cipher

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0!!!!!!!!!! !!!!!!!!!!! !!! ! 1!! !!!!!! !!!!!!!!!!!! 2 !! !!!! !! !!!!!! !3! !!!!!!!!! ! 4

Fig. A.8 – Le chiffrement par flot HiTag2. La fonction de sortie se compose du réseau
de petites fonctions (de f 4

a , f 4
b et f 5

c).

A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

149

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

0.1

1

10

100

1000

40 42 44 46 48 50 52 54 56

T
im

e
(s

)

No. of randomly guessed bits

Fig. A.9 – La recherche des états du chiffrement par flot Bivium. Tous les poins sur la
courbe montre le temps de mille exécutions. Le temps de le recherche est exponentiel
au nombre des bits donnés – moins il y a des bits d’aide pour l’algorithme SAT, le
déroulement de l’algorithme est moins rapide. Dans le mesure où l’on extrapole le
graphique sur l’axe x jusqu’à zéro, le temps d’une exécution sera 236.5 secondes.

Bivium

Le chiffrement par flot Bivium [34] est une version simplifiée du chiffrement par
flot Trivium, et il n’a été créé que pour des buts de recherche. Les articles publiés en
matière de cet algorithme de chiffrement parviennent aux solutions qui sont toujours
de plus en plus meilleures dans le bris de l’algorithme de chiffrement. La version la
plus rapide brise l’algorithme de chiffrement en 242.7 secondes sur un ordinateur de
bureau.

Il est possible de dévoiler les 177 bits d’état de Bivium à partir de 177 bits de
sortie en 236.5 secondes en moyenne dans le mesure où nous utilisons l’algorithme
SAT MiniSat. La méthode de solution présentée par nous est, par conséquent, 26 fois
plus rapide en moyenne que la méthode de solution la plus rapide publiée jusqu’ici.

150 A.5. L’APPLICATION DES ALGORITHMES SAT POUR BRISER LES
CHIFFREMENTS PAR FLOT

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

A.5.4 Conclusion

Les algorithmes SAT gardent de nombreuses possibilités pour les cryptographes,
et l’on a commencé à en profiter dans les dernières années. Cet article poursuit cette
direction de telle sorte qu’il rapproche les frontières de ces deux domaines de recherche
(soit les algorithmes SAT et la cryptographie) par des méthodes différentes. Les
méthodes présentées récemment sont capables de briser l’algorithme de chiffrement
Crypto-1 uniquement en 40 secondes en utilisant un ordinateur de bureau, tandis
que l’algorithme Bivium, dont nous avons constaté qu’il peut être plus difficilement
brisé, ne peut être brisé qu’en 236.5 secondes en moyenne, 26 fois plus rapidement
que la méthode de solution la plus rapide connue jusqu’ici.

A.6 Conclusion

Dans cette thèse, nous avons parvenus à présenter les protocoles RFID les plus
importants et analysé un protocole déjà publié. Nous avons fait connâıtre le protocole
ProbIP et sa version améliorée, le protocole EProbIP, et nous avons finalement
analysé à l’aide des algorithmes SAT les chiffrements par flot de faible demande
matérielle qui sont idéaux pour être implémentés aux RFID.

Nous pouvons constaté que les protocoles expérimentaux, tel le protocole de Di
Pietro-Molva, sont fortement fragiles du point de vue de la sécurité, et jusqu’à ce
qu’un bon protocole expérimental ne voie le jour, nous nous voyons dans l’obligation
d’utiliser des primitifs cryptographiques standards dans le but de maintenir la sécurité
des puces RFID. Le dernier chapitre de la thèse a analysé des versions de ce primitif
cryptographique standard qui sont particulièrement idéaux pour les appliquer sur
des RFID.

Le protocole RFID finalement choisi et utilisé peut influencer dans une large
mesure la propagation des RFID. Dans la mesure où il s’avère que le protocole choisi
et implémenté est défectueux et qu’ainsi tous les produits marqués par ce protocole
deviennent traçables, cela peut provoquer un tel désastre aux RFID qu’il peuvent
être retirées de la vie quotidienne. En revanche, si le protocole choisi est convenable,
fiable et s’il ne peut pas être facilement brisé, la puce RFID peut passer à chaque
produit commercial et un lecteur RFID peut passer à tous les outils quotidiens.

A.6. CONCLUSION 151

ANNEXE A. PROTOCOLES DE PROTECTION DE LA VIE PRIVÉE ET DE
SÉCURITÉ POUR LES RFIDS

152 A.6. CONCLUSION

Bibliographie

[1] Bárasz, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. Breaking
LMAP. In Conference on RFID Security — RFIDSec’07 (Malaga, Spain, July
2007), pp. 69–78.

[2] Bárász, M., Boros, B., Ligeti, P., Lója, K., and Nagy, D. A. Passive
attack against the M2AP mutual authentication protocol for RFID tags. In
RFID 2007 — The First International EURASIP Workshop on RFID Technology
(September 2007).

[3] Bard, G. V. Algorithms for the solution of polynomial and linear systems of
equations over finite fields, with an application to the cryptanalysis of KeeLoq.
Tech. rep., University of Maryland Dissertation, April 2008. Ph.D. Thesis.

[4] Baumgartner, P., and Massacci, F. The taming of the (X)OR. In
Computational Logic — CL 2000 (2000), vol. 1861/2000 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 508–522.

[5] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann,
A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C. PRESENT : An
ultra-lightweight block cipher. In Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2007 (Vienna, Austria, September 2007), P. Paillier
and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 450–466.

[6] Bolotnyy, L., and Robins, G. Physically unclonable function-based security
and privacy in RFID systems. In PerCom 2007 (March 2007), IEEE, pp. 211–
220.

[7] Bringer, J., Chabanne, H., and Dottax, E. HB++ : a lightweight
authentication protocol secure against some attacks. In Security, Privacy and
Trust in Pervasive and Ubiquitous Computing, 2006 — SecPerU 2006 (June
2006), pp. 28–33.

[8] Burmester, M., Le, T. v., and Medeiros, B. d. Provably secure ubiquitous
systems : Universally composable RFID authentication protocols. In Conference
on Security and Privacy for Emerging Areas in Communication Networks —
SecureComm ’06 (Baltimore, Maryland, USA, August-September 2006), IEEE.

[9] Cannière, C. D. Trivium : A stream cipher construction inspired by block
cipher design principles. In ISC (2006), S. K. Katsikas and et al, Eds., vol. 4176
of LNCS, Springer, pp. 171–186.

[10] Castelluccia, C., and Soos, M. Secret shuffling : A novel approach to
RFID private identification. In RFIDSec’07 (July 2007), pp. 169–180.

153

BIBLIOGRAPHIE

[11] Conti, M., Pietro, R. D., Mancini, L. V., and Spognardi, A. RIPP-FS :
an RFID identification, privacy preserving protocol with forward secrecy. In
International Workshop on Pervasive Computing and Communication Security

— PerSec ’07 (New York City, New York, USA, March 2007), IEEE, IEEE
Computer Society Press, pp. 229–234.

[12] Crawford, J. M., Kearns, M. J., and Shapire, R. E. The minimal
disagreement parity problem as a hard satisfiability problem. Tech. rep., Com-
putational Intelligence Research Laboratory and AT&T Bell Labs, February
1994.

[13] Eén, N., and Sörensson, N. An extensible SAT-solver. In SAT (2003),
E. Giunchiglia and A. Tacchella, Eds., vol. 2919 of LNCS, Springer, pp. 502–518.

[14] EPCglobal. 13.56 MHz ISM band class 1 radio frequency identification tag
interface specification (2003). Tech. rep., Auto-ID cetner, MIT, February 2003.

[15] Feldhofer, M., Wolkerstorfer, J., and Rijmen, V. AES implementa-
tion on a grain of sand. In Information Security (2005), IEEE, pp. 13–20.

[16] Fossorier, M. P. C., Mihaljević, M. J., Imai, H., Cui, Y., and Mat-
suura, K. A novel algorithm for solving the LPN problem and its applicatio
to security evaluation of the HB protocol for RFID authentication. In INDO-
CRYPT (2006), R. Barua and T. Lange, Eds., vol. 4329 of Lecture Notes in
Computer Science, Springer, pp. 48–62.

[17] Gilbert, H., Robshaw, M., and Sibert, H. An active attack against HB+ -
a provably secure lightweight authentication protocol. In IEE Electronic Letters
41, 21 (2005), pp. 1169–1170.

[18] Gilbert, H., Robshaw, M. J. B., and Seurin, Y. HB# : Increasing the
security and efficiency of HB+. In Smart [37], pp. 361–378.

[19] Hell, M., Johansson, T., and Meier, W. Grain — a stream cipher
for constrained environments. In Proceeding of the Workshop on RFID and
Lightweight Crypto (July 2005), pp. 114–125.

[20] ISO/IEC. 14443-3 — Identification cards – Contactless integrated circuit(s)
cards – Proximity cards – Part 3 : Initialization and anticollision, 2001, Stage :
90.92 — 2007-12-11.

[21] Juels, A. Minimalist cryptography for low-cost RFID tags. In International
Conference on Security in Communication Networks — SCN 2004 (Amalfi,
Italia, September 2004), C. Blundo and S. Cimato, Eds., vol. 3352 of LNCS,
Springer-Verlag, pp. 149–164.

[22] Juels, A., and Weis, S. Authenticating pervasive devices with human
protocols. In Advances in Cryptology — CRYPTO’05 (Santa Barbara, California,
USA, August 2005), V. Shoup, Ed., vol. 3126 of LNCS, IACR, Springer-Verlag,
pp. 293–308.

[23] Juels, A., and Weis, S. Defining Strong Privacy for RFID. In International
Conference on Pervasive Computing and Communications — PerCom 2007
(New York City, New York, USA, March 2007), IEEE, IEEE Computer Society
Press, pp. 342–347.

154 BIBLIOGRAPHIE

BIBLIOGRAPHIE

[24] Koutarou, M. O., Suzuki, K., and Kinoshita, S. Cryptographic approach
to ”privacy-friendly” tags. In RFID Privacy Workshop (MIT, Massachusetts,
USA, November 2003).

[25] McLoone, M., and Robshaw, M. J. B. Public key cryptography and RFID
tags. In CT-RSA (2007), M. Abe, Ed., vol. 4377 of Lecture Notes in Computer
Science, Springer, pp. 372–384.

[26] Molnar, D., and Wagner, D. Privacy and security in library RFID :
issues, practices, and architectures. In CCS ’04 : Proceedings of the 11th ACM
conference on Computer and communications security (New York, NY, USA,
2004), ACM Press, pp. 210–219.

[27] Munilla, J., and Peinado, A. HB-MP : A further step in the hb-family of
lightweight authentication protocols. Comput. Netw. 51, 9 (2007), 2262–2267.

[28] O’Donnell, C. W., Suh, G. E., and Devadas, S. PUF-based random
number generation. In MIT CSAIL CSG Technical Memo 481 (November 2004).

[29] Oren, Y., and Feldhofer, M. WIPR — a public key implementation on
two grains of sand. In Workshop on RFID Security 2008 (2008), S. Dominikus,
Ed., pp. 15 – 27.

[30] Ouafi, K., Overbeck, R., and Vaudenay, S. On the security of HB#
against a man-in-the-middle attack. In Advances in Cryptology — Asiacrypt
2008 (Melbourne, Australia, December 2008), vol. 5350 of Lecture Notes in
Computer Science, Springer, pp. 108–124.

[31] Ouafi, K., and Phan, R. C.-W. Privacy of Recent RFID Authentication
Protocols. In Information Security Practice and Experience, 4th International
Conference, ISPEC 2008 (Berlin, 2008), Lecture Notes in Computer Science,
Springer, pp. 263–277.

[32] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J.,
and Ribagorda, A. LMAP : A real lightweight mutual authentication protocol
for low-cost RFID tags. In Proceedings of RFIDSec’06 (Graz, Austria, July
2006), Ecrypt.

[33] Pietro, R. D., and Molva, R. Information confinement, privacy, and security
in RFID systems. In Proceedings of the 12th European Symposium On Research
In Computer Security (September 2007), pp. 187–202.

[34] Raddum, H. Cryptanalytic results on Trivium. Tech. Rep. 2006/039, ECRYPT
Stream Cipher Project, 2006. www.ecrypt.eu.org/stream/papersdir/2006/
039.ps.

[35] Shamir, A. SQUASH — a new MAC with provable security properties for
highly constrained devices such as RFID tags. In FSE (2008), K. Nyberg, Ed.,
vol. 5086 of Lecture Notes in Computer Science, Springer, pp. 144–157.

[36] Sinz, C. Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reason. 39, 2 (2007), 219–243.

[37] Smart, N. P., Ed. Advances in Cryptology — EUROCRYPT 2008, 27th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings (2008), vol. 4965
of Lecture Notes in Computer Science, Springer.

BIBLIOGRAPHIE 155

www.ecrypt.eu.org/stream/papersdir/2006/039.ps
www.ecrypt.eu.org/stream/papersdir/2006/039.ps

BIBLIOGRAPHIE

[38] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik
13 (1969), 354–356.

[39] Tsudik, G. YA-TRAP : Yet another trivial RFID authentication protocol.
In International Conference on Pervasive Computing and Communications —
PerCom 2006 (Pisa, Italy, March 2006), IEEE, IEEE Computer Society Press,
pp. 640–643.

[40] Éric Levieil, and Fouque, P.-A. An improved LPN algorithm. In Security
and Cryptography for Networks — SCN (2006), R. D. Prisco and M. Yung, Eds.,
vol. 4116 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 348–359.

156 BIBLIOGRAPHIE

	Introduction
	I State of the art
	RFID systems
	Complexity measures for RFIDs
	Gate Equivalents
	Battery use

	Standards
	ISO/CEI 14443
	EPC Class 1 Gen 2

	Media Access Control protocols
	MAC protocols used in RFIDs
	The ISO14443A standard MAC protocol
	The EPC Class 1 Gen 2 MAC protocol

	Conclusions

	RFID security protocols
	RFID protocol features
	Identification
	Authentication

	Privacy-preserving RFID identification
	Physical layer solutions
	Information-theoretic protocols
	Hash-based protocols
	Key-tree based protocols
	Protocols based on experimental crypto-primitives

	RFID Authentication protocols
	Symmetric cipher and hash-based protocols
	Rabin cryptosystem-based protocols
	Protocols based on public-key cryptography
	HB+ and its variants
	Physically Uncloneable Functions

	Protocol properties overview
	Conclusions

	Bibliography

	II On the difficulty of designing ad-hoc RFID security protocols
	Analysing the Molva and Di Pietro Private RFID Authentication Scheme
	A short summary of the Molva - Di Pietro scheme
	Private identification
	Tag authentication
	Reader authentication

	The DPM function
	Key equivalences
	Pair-equivalences
	The effect of equivalences

	Private identification
	Observations about Lemma 2
	The true number of (alpha p,Vp) pairs needed
	The bandwidth needed in a common setup
	Implementation of the Lookup Process

	Retrieving k i,j
	Exhaustive search
	Man-in-the-middle attack

	Design flaws and their remedies
	Design flaws
	Remedies for the problems found

	Conclusions

	Secret Shuffling
	Probabilistic Identification Protocol
	Protocol description
	Example protocol run
	Minimum number of packets needed by the reader
	Parameters
	Implementation of the protocol in the backend
	Implementation of the protocol in the tag

	The attack by Ouafi et al.
	Conclusions

	Noisy Secret Shuffling
	Error-introducing ProbIP
	Minimum number of packets needed by the backend server
	Modified backend server and tag implementations
	Integration of EProbIP into the EPC standard

	Security analysis of EProbIP
	Attack vectors
	Computationally-intensive approach
	Packet-intensive approach
	Resistance to attacks

	Conclusions
	Calculating propagation and conflict probabilities for Function Multi-DPLL

	Bibliography

	III Stream ciphers in RFIDs
	An example RFID security protocol using low hardware-complexity stream ciphers
	Stream ciphers
	Two stream cipher-based RFID protocols
	A simplistic protocol
	A more complex protocol

	Conclusions

	Using SAT solvers to analyse low hardware-complexity stream ciphers
	Background
	SAT solvers
	Algebraic Cryptanalysis
	Stream Ciphers

	Adapting the SAT solver
	Full pre-simplification
	XOR support
	Gaussian elimination
	Dynamic behaviour analysis
	Optimal attack method

	Adapting the cipher representation
	Logical circuit representation
	Generating the logical circuit representation
	Optimising the representation of LFSRs
	Optimising the representation of non-linear functions

	Implemented Attacks
	Calculating the expected running time
	The attacks

	Conclusions
	Learnt clause length statistics
	HiTag2 and Crypto-1 extrapolation examples

	Bibliography

	Conclusions
	Protocoles de protection de la vie privée et de sécurité pour les RFIDs
	Introduction
	Les protocoles RFID
	Identification
	Authentification

	Noisy Secret Shuffling
	Probabilistic Identification Protocol
	L'analyse de sécurité du ProbIP
	Le protocole EProbIP
	L'analyse de sécurité de l'EProbIP
	Conclusion

	L'analyse du protocole d'authentification et d'identification RFID de Di Pietro et Molva
	Le protocole Di Pietro-Molva
	Équivalences de clés
	Remarques en relation avec le deuxième lemme
	Retrouver k_i,j
	Conclusion

	L'application des algorithmes SAT pour briser les chiffrements par flot
	L'adaptation des algorithmes SAT à l'environnement des chiffrements par flot
	Adaptation de la représentation de l'algorithme de chiffrement
	Attaques réalisées
	Conclusion

	Conclusion
	Bibliography

