
forl
Mate Soos

Security Research Labs

I. Introduction

This paper presents the defining features of the conflict-
driven clause-learning SAT solver forl. forl aims to be
a modern SAT Solver that unifies the ideas present in
SatELite [1], PrecoSat [2], glucose [3] and MiniSat [4] with
some ideas of the author.

II. Primary features

A. Binary implication graphs

An implication cache mechanism is employed that stores
the binary implication graph similarly to stamps [5].
Stamps are also used, as they have been found to aid
along with the cache.

B. Clause cleaning

Clauses are cleaned regularly, but neither activities nor
glues are used in the cleaning. Instead, the number of
times a clause helped to propagate or caused a conflict is
used as a measure of the effectiveness. This measure is
reset after every cleaning, so clauses have to regularly prove
themselves effective to stay in the database.

C. Implicit Clauses

Binary and tertiary clauses are stored and handled im-
plicitly. This greatly eases their subsumption and strength-
ening. Further, it reduces the cost of creating occurrence
lists out of these clauses. Implicit clauses are never cleaned.

D. Statistics

forl gathers large amounts of running statistics. Unfor-
tunately they are not yet used to direct search. However,
they can be gathered into MySQL and displayed in a web
browser. Importing statistics into the database incurs setup
costs and about 10% running cost and so is disabled by
default.

E. Time limiting

For average problems inprocessing techniques tend to
work well. However, in case of strange problems (such
as problems with billions of binary clauses) they some-
times misbehave. This has been solved with more precise
time measurements (measuring effort, not actual time) and
sometimes complicated time-out checks.

F. Memory usage

Memory usage has been greatly improved with precise
tracking of where memory is being used. Although memory
leaks are not generally an issue given the programming tech-
niques used, temporary allocation of large data structures

was a problem. These issues have been fixed through algo-
rithmic means: e.g. through the use of circular swapping
for variable renumbering.

G. Hyper-binary resolution and transitive reduction

On-the-fly hyper-binary resolution [6] and transitive re-
duction has been implemented in both DFS and BFS prob-
ing for both irreducible and reducible binaries. This helps
on instances with generally acceptable number of binary
clauses. For problems with too many binary clauses, tran-
sitive reduction can take too much time. Such cases are
detected and transitive reduction is turned off.

H. Certified UNSAT

The DRUP system for certified UNSAT was implemented
into forl. The current implementation turns on all optimisa-
tions except for XOR-manipulation during certificate gener-
ation. However, for stamping and implied literal caching to
work, binary clauses must never be DRUP-deleted during
variable elimination. This trade-off is questionable, as it
might considerably slow down proof checking. As such,
there are two versions submitted, one with these options
turned on, and one with these options turned off.

I. Disjoint component finding

Disjoint components are searched for on a regular basis
during solving. These disjoint components are solved with
a separate solver instance, renumbering the component’s
variables such as to minimise the startup time of the sub-
solver. On certain problems, forl can find&solve thousands
of disjoint components within a matter of seconds.

III. Miscellaneous optimisations

Hand-rolled memory manager for large clauses, clause
offsets instead of pointers, blocking literals, occurrence
lists in watchlists, clause abstraction stored in occurrence
lists, glue-based and geometric restart selection based on
literal polarities, xor detection and manipulation, gate de-
tection and manipulation, variable elimination [1], sub-
sumption, strengthening, on-the-fly subsumption [7], re-
cursive conflict clause minimisation [8] (and automatic
disabling in case of bad performance), minimisation with
stamps&cache&binary clauses (and automatic disabling
in case of bad performance), blocking of long clauses [9],
equivalent literal replacement, variable renumbering, literal
dominator branching thanks to stamps/cache, dominator
probing, polarity caching [10], vivification [11] of long and
implicit clauses, watchlist sorting for quasi- prioritised im-
plicit clause propagation, regular cleaning of false literals
of all clauses, detection of long trail and consequent restart
blocking in case of satisfiable problems, MiniSat-type vari-
able activities, glue-based extra variable activity bumping,



prefetching of watchlists on literal enqueue, optional UIP
conflict [12] graph generation, probing (with automatic
tuning based on past performance), clause subsumption
through irreducible stamps and cache, clause strengthen-
ing through reducible&irreducible stamps and cache, pre-
cise elimination cost prediction for better elimination or-
der, gradual variable elimination, variable elimination with
searching for subsumed&subsuming product clauses.

Acknowledgements

The author would like to thank in no particular order Mar-
tin Maurer, Vegard Nossum, Valentin Mayer-Eichberger,
George Katsirelos, Karsten Nohl, Luca Melette, Marijn
Heule, Vijay Ganesh, Trevor Hansen and Robert Aston for
their help.

References

[1] Eén, N., Biere, A.: Effective preprocessing in SAT through
variable and clause elimination. In Bacchus, F., Walsh, T., eds.:
SAT. Volume 3569 of LNCS., Springer (2005) 61–75

[2] Biere, A.: P{re,i}cosat@sc’09 In: SAT 2009 competitive events
booklet. (2009) 41–42

[3] Audemard, G., Simon, L.: GLUCOSE: a solver that predicts
learnt clauses quality. In: SAT 2009 competitive events booklet.
(2009) 7–8

[4] Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia,
E., Tacchella, A., eds.: SAT. Volume 2919 of LNCS., Springer
(2003) 502–518

[5] Heule, M., Järvisalo, M., Biere, A.: Efficient CNF simplification
based on binary implication graphs. In Sakallah, K.A., Simon,
L., eds.: SAT. Volume 6695 of LNCS., Springer (2011) 201–215

[6] Bacchus, F., Winter, J.: Effective preprocessing with hyper-
resolution and equality reduction. In Giunchiglia, E., Tacchella,
A., eds.: SAT. Volume 2919 of LNCS., Springer (2003) 341–355

[7] Han, H., Somenzi, F.: On-the-fly clause improvement. [13]
209–222

[8] Sörensson, N., Biere, A.: Minimizing learned clauses. [13]
237–243

[9] Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination.
In Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of
LNCS., Springer (2010) 129–144

[10] Pipatsrisawat, K., Darwiche, A.: A lightweight component
caching scheme for satisfiability solvers. In Marques-Silva, J.,
Sakallah, K.A., eds.: SAT. Volume 4501 of LNCS., Springer
(2007) 294–299

[11] Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal
formulae. In Ghallab, M., Spyropoulos, C.D., Fakotakis, N.,
Avouris, N.M., eds.: ECAI. Volume 178 of Frontiers in Artificial
Intelligence and Applications., IOS Press (2008) 525–529

[12] Silva, J.P.M., Sakallah, K.A.: GRASP-a new search algorithm
for satisfiability. In: ICCAD’96, IEEE Computer Society (1996)
220–227

[13] Kullmann, O., ed.: Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings. In Kull-
mann, O., ed.: SAT. Volume 5584 of Lecture Notes in Computer
Science., Springer (2009)


	Introduction
	Primary features
	Binary implication graphs
	Clause cleaning
	Implicit Clauses
	Statistics
	Time limiting
	Memory usage
	Hyper-binary resolution and transitive reduction
	Certified UNSAT
	Disjoint component finding

	Miscellaneous optimisations

