
Lessons Learnt – Seven Years of
CryptoMiniSat

Presentation at PoS 2016

Mate Soos

Gotham Digital Science
A Stroz Friedberg Company

4th of July 2016

1



Outline

Intro

In Detail

Conclusions

2



About Me

Information security professional

Working at information security firm, helping firms secure
their products&services over the whole life-cycle

Doing SAT (and some SMT) purely as a hobby,
after-hours, weekends

My employer, Gotham Digital Science, paid for me to come
here. Thanks!

3



Bird’s eye view of CryptoMiniSat

Modern, inprocessing, parallel SAT solver

First commit 10pm, 10th of Aug, 2009. Already had XOR

Fully open source, even during competition. 9377 commits

4̃7kLoC of code (build system > MiniSat code base)

300+ bug reports closed, 5 open

LGPLv2. Can be safely used or linked, but released
binaries must come with code

180+ citations in Google Scholar to “Extending SAT
Solvers to Cryptographic Problems”

4



SAT Features

DRAT

SCC, Eq. literal replacement

Binary cache, Stamping

Implicit 2- and 3-long clauses

Probing, Intree probing

Hyper-binary resolution, transitive reduction

Clause distillation

Subsumption, self-subsuming resolution, BVA, BVE

Component discovery and solving

Variable renumbering

Changeable restart and clause cleaning strategies

XOR → CNF, XOR recovery, Matrix recovery

On-the-fly Gauss-Jordan elimination

5



Inprocess Schedule

handle-comps, scc-vrepl, cache-clean, cache-tryboth,
sub-impl, intree-probe, probe,
sub-str-cls-with-bin, distill-cls,
scc-vrepl, sub-impl, str-impl, sub-impl,
occ-backw-sub-str, occ-clean-implicit, occ-bve, occ-bva, occ-xor,
str-impl, cache-clean, sub-str-cls-with-bin, distill-cls,
scc-vrepl, check-cache-size, renumber,
occ-gauss

6



Other Features

Python interface

SQLite, MySQL data dumping

Web-based data examination

AWS scripts to run tests

Extensive fuzz-testing

Some component-testing

On-the-fly reconfiguration

Automatic push-based build, test,
fuzz/unit/acceptance-test, static analyse, code coverage for
10+ Linux & Windows configs

7



Outline

Intro

In Detail

Conclusions

8



Bogoprops

We all know the funny story about Fibonacci number func

Edge cases will be exercised. Always.

SCC is implemented in recursive fashion. Just hit my
ankle, “unlimited” stack is 2MB/thread. Crash.

Everything not O(n) can go haywire. Must measure
everything

CPU opcounts would be cheap – but non-reproducible on
different builds/compilers

CMS uses “Bogoprops”. Incremented on expensive
operations (mostly mem ops). Yes, kinda like Knuth’s
memops

Bogoprops is everywhere, even SCC, which is O(e + v)

Intree probing needs scc-eqlit until fixedpoint. This can be
expensive, must measure

9



Maintenance Overhead is King

Had a bunch of ideas with changed/strengthened clause
queues

To make complete, it’s really hard, lots of edge cases

Randomisation is less performant but much more
maintainable

Maintaining datastructures over a system with complicated
ways of changing data (e.g. variable renaming and eqLit) is
expensive and bugs will creep in

Stateless + randomisation is used almost everywhere

10



Datastructures

Implicit bin+tri clauses in watchlist and reason

Occurrence lists are built and thrown away. As is almost
every re-computable data

Class hierarchy: CNF, Propengine, HyperEngine, Searcher,
Solver, (SATSolver)

Helper classes: VarReplacer, DistillerAllWithAll,
CompHandler, Gaussian, Prober, Intree, SQL, . . . ,
OccSimplifier

OccSimplifier: BVA, SubsumeStrenghten, XorFinder

Common functions: new var(s), update vars, mem used,
print stats

11



Gauss-Jordan Elimination

It turns out that having native XOR clauses is painful

You need to take care about them for every simplification

One needs to reinvent every single 3-letter acronym by
Biere, Heule, Jarvisalo for XOR

Ain’t nobody got time for dat

So inprocessing is bunched together, XORs are recovered at
the end, put into matrix

XOR recovery is the trivial method. I trust inprocessing
does the magic

12



(Re)configuration

Lots of magic numbers. Manageability is king, all in
SolverConf.cpp

Allows for more through fuzzing (think of cutoffs)

Obvious idea: dump SQL data, change at predetermined
point, run on N orthogonal re-config

Machine learn SQL-to-config mapping, re-configure during
competition

Demo time!

13



Parallelism

Not really important in industry, for academics + hobbyists

Easy, with locked data structs, yet quite effective

Launching highly orthogonal solver configs

Sharing only bin+tri, as orth. config cls don’t mix

Had a MPI system, could run over 50+ machines, passed
bin+tri in msgs

14



Testing – Component Testing

The most insidious bugs are the ones where there is no
SAT→UNSAT issue

The simplification simply doesn’t work all the time, or
most of the time

Only performance test can pick this up, but it can be lost
in the noise

So CMS has 200+ component tests to check subsumption,
strengthening, BVE, BVA, etc.

Big advantage of helper classes is that I can do this

Demo!

15



Testing – Fuzzing

Huge thanks to Armin Biere for this one

Fuzz test harness about 1kLoC

Checks: SAT, UNSAT, DRAT, assumptions and conflict
for library usage

Generates: using Beire’s and Brummayer’s fuzzer + SHA-1
generation by Nossum

XOR-CNF generator for G-J fuzzing

CNF concatenator for component fuzzing

Fuzzes options – Armin told me about this in 2010, paper
by Manthey et al. 2016

Checks for ASAN/MSAN/over-underflow/alignment

SLOW DEBUG for more invarant checking during runtime

16



Testing – Performance

To be good at SAT Comp, performance-testing is crucial

Researchers have access to hundreds/thousands of CPUs

AWS client-server. Small client bids on chunky server(s)

./launch server --cnflist satcomp14 --s3folder

new test --stats --gauss

Uses cloud-init, everything is ephemeral, pulled from my
GitHub, mails me instructions to download from S3 when
done

Gives me back console output, SQLite data, DRAT stats

Spent 500+ EUR on this in the past years

17



Graphical Overview of Solving

Maybe I could understand what’s going on with a GUI

1kLOC PHP+JS system based on MySQL dumped data

Humans are not very good at understanding GBs of data

Or my visualisation is horrible

Demo time!

18



Outline

Intro

In Detail

Conclusions

19



The Really Though Stuff

Making sure CMS doesn’t hit edge-cases

Making sure all the algorithms don’t have hidden bugs
when they skip over things

Making sure “improvement ideas” don’t degrade
performance on class(es) of problems

Navigating SAT Competition where speed on single CNFs
that may not be representative is king, versus real-life
where library call speed and startup time are kings

SAT solvers have been tuned to specific CNFs in the past
years and you need $$$ to do that

20


	Intro
	In Detail
	Conclusions

