
Solving CNF-XOR Formulas: A Practical Perspective

Mate Soos

Simons Institute SAT Program Seminar

22nd of February, 2021

About Me

PhD at INRIA Grenoble 2009

Maintainer of CryptoMiniSat, ApproxMC, UniGen, STP

Working as a Senior Research Fellow at National University of Singapore (3mo a year)

Working as a Senior IT Security Architect at Zalando (9mo a year)

Interests: SAT solving, Counting, Sampling, Machine Learning, Higher level abstractions

CNF-XOR

CNF with XORs occur in a number of problem domains, for example:

Cryptography. ex find the key given partially observed circuit data [MohamedBulyginZHW2012]

Adder and multiplier circuits: ex. see Daniela Kaufmann’s presentation “Combining SAT and Computer Algebra
for Circuit Verification” (February 16th) [KaufmannBiereKauers2019]

Polynomial systems over GF(2): ex.

ab ⊕ b ⊕ e f d ⊕ e = 0
a ⊕ e ⊕ f d = 0
abcd ⊕ e ⊕ f = 0

See e.g. Bosphorus [ChooSoosChaiMeel19]

Hashed-based counting and sampling [ChakrabortyMeelVardi2003]

In this talk, we’ll use approximate counting as our reference problem

Motivating Problem: Approximate Counting

ApproxMC by Chakraborty, Meel, and Vardi (2003): A Scalable Approximate Model Counter

Random XORs over the projection set: a hashing-based strategy to probably approximately count solutions

99% of its time is spent in the SAT solver solving CNF-XOR formulas

(1) Pick a random cell, (2) count solutions, (3) multiply by no. cells

XORs in CNF

Translating a⊕b⊕ c = 1 into CNF using Tseitin transformation [Tseitin’66]:

a ∨ b ∨ c
a ∨ ¬b ∨ ¬c
¬a ∨ ¬b ∨ c
¬a ∨ b ∨ ¬c

An XOR for size N needs 2n−1 clauses to translate without helper variables.

To translate an XOR a⊕b⊕ c⊕d⊕ e⊕ f = 0, we cut it into two XORs, using a helper variable x:

a ⊕ b ⊕ c ⊕ x
x ⊕ d ⊕ e ⊕ f

Using as many helper variables as needed cuts down the blowup to linear size. It increases the number of variables,
but that’s not really an issue. Modern SAT solvers can deal with millions of variables. However....

XOR manipulation once in CNF format

XORs can be recovered syntactically and semantically

Syntactic recovery seems easy but:

a ∨ b
a ∨ ¬b ∨ ¬c
¬a ∨ ¬b ∨ c
¬a ∨ b ∨ ¬c

→ still implies the XOR, so complication arise

Once recovered, XORs can be re-assembled:

a ⊕ b ⊕ c ⊕ x
x ⊕ d ⊕ e ⊕ f

becomes

a⊕b⊕ c⊕d⊕ e⊕ f = 0

XORs in different matrices can be extracted by grouping XORs together that coincide on at least one variable.

→ Since naive GJE is O(n3), if we have two matrices of n/2 size, we’ll be ≈ 4x faster working on them separately

Running GJE on the reassembled XORs is easy, but does not suffice – it will only perform GJE at “toplevel”,
i.e. without any assignments by the solver.

Resolution on XOR formulas

Standard (non-extended) resolution is bad at proving UNSAT of XORs blasted into CNF

Actually, the minimum size resolution proof can be made to be exponential in the number of variables

But naive Gauss-Jordan Elimination (GJE) is only O(n3)

We need to combine GJE with CDCL or we won’t have a hope of solving some of these formulas

N.B.: We don’t always need GJE just because there are XORs. E.g. if there is an UNSAT core that doesn’t contain
a single clause from the XORs, it can be OK (though there may be a smaller UNSAT proof with the XORs)

Gaussian Elimination

Gaussian elimination [UnknownChineseAuthor(s)179, Newton1670] is an algorithm in linear algebra for solving a
system of linear equations. Let’s restrict ourselves to linear equations over GF(2), i.e. to:

x1 ⊕ x3 = 0
x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x2 = 0

→ In matrix notation:


x1 x2 x3 RHS
1 0 1 0
1 1 1 1
1 1 0 0


In Gaussian Elimination, we aim to modify the matrix until the lower left-hand corner of the matrix is filled with zeros,
also called the upper triangular form:

 1 0 1 0
1 1 1 1
1 1 0 0

 → XOR row of leftmost “1” into all rows where
‘1” is present in that column

 1 0 1 0
0 1 0 1
0 1 1 0


 1 0 1 0

0 1 0 1
0 1 1 0

 → XOR row of 2nd leftmost “1” into all rows
where ‘1” is present in that column

 1 0 1 0
0 1 0 1
0 0 1 1



Gaussian Elimination cont.

 1 0 1 0
1 1 1 1
1 1 0 0

 → XOR row of leftmost “1” into all rows where
‘1” is present in that column

 1 0 1 0
0 1 0 1
0 1 1 0


 1 0 1 0

0 1 0 1
0 1 1 0

 → XOR row of 2nd leftmost “1” into all rows
where ‘1” is present in that column

 1 0 1 0
0 1 0 1
0 0 1 1


What if the matrix doesn’t look so pretty?

We can swap rows to make sure the 1st row has a “1” in the leftmost column

If a row contains [000 . . .0|1] then the set of linear equations cannot be satisfied, i.e. UNSAT

If the matrix is underdetermined, if there is a solution, it’s never a single solution. E.g. 20 variables but only 5
equations.

Gauss-Jordan Elimination

Gauss-Jordan Elimination lets Gaussian Elimination finish, then goes from right to left, bottom to top:

 1 0 1 0
0 1 0 1
0 0 1 1

 → XOR the row of rightmost “1” into all rows
above where a “1” is present

 1 0 0 1
0 1 0 1
0 0 1 1


This is known as the row echelon form. We can now trivially read out the solution:

x1 = 1
x2 = 1
x3 = 1

This indeed satisfies:

x1 ⊕ x3 = 0
x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x2 = 0

CDCL(T)

For theories that are not efficiently simulated by CDCL

T is the theory, e.g.:

Gauss-Jordan Elimination [SoosNohlCastelluccia’2010]

Pseudo-Boolean Reasoning [ChaiKuehlmann’2006]

Symmetric Explanation Learning [DevriendtBogaertsBruynooghe’2017]

Theory is run side-by-side to the CDCL algorithm

Propagate values implied by Theory given current assignment stack of CDCL

Conflict if Theory implies 1=0 given current assignment stack of CDCL

Theory must give reason for propagations&conflicts

CDCL Theory

Current assignment stack
Current set of conflict clauses

New propagations
New conflicts

CDCL(T) Cont.

Optimizations:

Should only send delta of assignment stack + conflict clauses

Variables assigned (decisions + propagations)

Variables unassigned (backtracking, restarting)

New conflict clauses

Theory only needs to compute delta relative to old state

Theory can give placeholders for reasons

If reason is needed during conflict generation, Theory is queried

Called “lazy” (vs “greedy”) interpolant generation

CDCL Theory
Solver

Delta assignment stack
Delta conflict clauses

New propagations
New conflicts

Reason placeholders
Theory StateUpdate state

Reason queries
and answers

CDCL(T) Gauss-Jordan Elimination: Ingredients

What components do we need?

Extractor for XOR constraints: XORs may be encoded as CNF

Disjoint matrix detection: disjoint matrices should be handled separately

Delta update mechanism for row-echelon form matrix:

how to handle when variable is set

how to handle when variable is unset

Efficient data structures to allow for quick updates

Reason generation

CDCL(T) Gauss-Jordan Elimination: None of that row swapping please!

Observations:

We are using binary matrices (1/0), so bit-packed format is best

Packed format: row-swapping becomes expensive – it’s a copy

Row-echelon form is nice for the eyes [HanJiang2012]:

But we only need a row to be responsible for a column’s “1”

What we loose: have to check all rows, not only ones below

So, any row can be responsible for being a column’s “1”


x1 x2 x2 x3 x4 x5 x6 x7 RHS
0 0 0 1 1 1 0 1 1
1 1 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0


The top line reads: x3⊕ x4⊕ x5⊕ x7 = 1

CDCL(T) Gauss-Jordan Elimination: 2-variable watchlist scheme

Let’s use a 2-variable watch scheme [HanJiang2012]:

If 2 or more variables are unset in XOR constraint, it cannot propagate or conflict

If 1 variable is unset, it must propagate

If 0 variable is unset, it is either satisfied or is in conflict

We’ll use the Simplex Method’s terminology [Danzig’82]:

Let’s call the column that the row is responsible for “basic”

Let’s call the column that the row is NOT responsible for “nonbasic”

What data structures do we need for this? Let’s see:

Watchlist for variables (not literals!)

column-has-responsible-row[column] = 1/0

row-to-nonbasic-column[row] = column

CDCL(T) Gauss-Jordan Elimination: Propagation

A rough outline:

Observe that the matrix is usually underdetermined: more columns than rows

Many unset columns will have no responsible rows

If we set a variable, its column doesn’t need a responsible row

The more variables we decide on, the more the matrix will be determined


0 0 0 1 1 1 0 1 1
1 1 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0
1 0 1 1 0 1 0 0 0

 Let’s set the first column to “1”→


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1



we get a propagation! →


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1


Notice: we were were watching
both of this row’s variables where
it has a “1”. It’s a 2-variable watch
scheme!

CDCL(T) Gauss-Jordan Elimination: Propagation

We got a propagation
from last slide:


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0 1

 Variable is now set by
Gauss-Jordan→


0 0 0 1 1 1 0 1 1
0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1



Variable is decided on
→


0 0 0 1 1 1 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1


Need new basic

variable
→


0 0 0 1 1 1 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1



Must adjust matrix
→


0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1

 New propagation
→


0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


And the story goes on...

CDCL(T) Gauss-Jordan Elimination: Reason Clauses

What combination of XOR constraints gave us the propagation?

The above set of matrices cannot give us the reason clause

Easy solution: the “green” columns are actually not zeroed out

When looking for propagations/conflicts, we check if columns’ variable is set. If yes, we pretend it’s a 0

When looking for reasons, we use the actual values

All the row-XOR operations happen as before

Hence:

Each row is a combination of input XOR constraints

It is guaranteed to propagate/conflict under current variable assignment

When a variable is set, we are just wearing “green glasses”, a bitmask

CDCL(T) Gauss-Jordan Elimination: Backtracking

If we don’t zero out the columns, we get a free bonus! If we need to unset an assignment due to backtracking, we
pretend we never set it (remove “green glasses”):

All previous invariants still hold

If the column had a responsible row, it still has it

Both watches of the row are still good and in the watchlists

Matrix looks differently than when we last had this assignment... is that a problem?

No! Observe: new matrix could have been reached from the starting position, pivoting differently(!)

CDCL(T) Gauss-Jordan Elimination: Recap

Let’s recap! What was hard:

Extracting XOR constraints

Keeping CDCL and GJ in sync:

Fast update for variable setting (propagation)

Fast update for backtracking (conflict)

Fast checking for propagation/conflict

Lazy reason clause generation

Thank you!

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 400 600 800 1000 1200

T
im

e
 (

s
)

Problems solved

ApproxMC4 -- improved GJE (2020)
ApproxMC3 -- fixed GJE (2019)
ApproxMC -- only toplevel GJE

