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ABSTRACT

Given a Boolean formula 𝜙 over the set of variables 𝑋 and
a projection set 𝒫 ⊆ 𝑋, then if ℐ ⊆ 𝒫 is independent
support of 𝒫, then if two solutions of 𝜙 agree on ℐ, then
they also agree on 𝒫. The notion of independent support is
related to the classical notion of definability dating back to
1901, and have been studied over the decades. Recently, the
computational problem of determining independent support
for a given formula has attained importance owing to the
crucial importance of independent support for hashing-based
counting and sampling techniques.

In this paper, we design an efficient and scalable inde-
pendent support computation technique that can handle
formulas arising from real-world benchmarks. Our algorith-
mic framework, called Arjun1, employs implicit and explicit
definability notions, and is based on a tight integration of
gate-identification techniques and assumption-based frame-
work. We demonstrate that augmenting the state-of-the-art
model counter ApproxMC4 and sampler UniGen3 with Arjun
leads to significant performance improvements. In particular,
ApproxMC4 augmented with Arjun counts 576 more bench-
marks out of 1896 while UniGen3 augmented with Arjun sam-
ples 335 more benchmarks within the same time limit.
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1 INTRODUCTION

Given a Boolean formula 𝜙 over the set of variables 𝑋,
let 𝑠𝑜𝑙(𝜙) represent the set of solutions of 𝜙. For a given
assignment 𝜎 over 𝑋 and a subset of variables 𝒫 ⊆ 𝑋,
let 𝜎↓𝒫 represent the assignment of variables restricted to
𝒫. Given a Boolean formula 𝜙 over the set of variables
𝑋 and a projection set 𝒫 ⊆ 𝑋, a subset of variables ℐ
1The tool is available open-source at https://github.com/meelgroup/
arjun
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such that ℐ ⊆ 𝒫 is called independent support of 𝒫 if
∀𝜎1, 𝜎2 ∈ 𝑠𝑜𝑙(𝜙), 𝜎1↓ℐ = 𝜎2↓ℐ =⇒ 𝜎1↓𝒫 = 𝜎2↓𝒫 . In this
paper, we focus on the design of efficient algorithmic tech-
niques to compute ℐ for a given 𝜙 and 𝒫.

1.1 Applications: Counting and Sampling

Given a Boolean formula 𝜙 and a projection set 𝒫 ⊆ 𝑋,
the problem of projected model counting seeks to compute
the number of solutions of the formula ∃𝑌 𝜙 where 𝑌 =
𝑋 ∖𝒫; alternatively, the solutions of the formula ∃𝑌 𝜙 can be
viewed as solutions of the formula projected on 𝒫. Observe
that projected model counting is a strict generalization of
the classical problem of propositional model counting which
focuses on the case when 𝒫 = 𝑋. Similarly, the problem of
projected sampling seeks to uniformly sample solutions of
∃𝑌 𝜙.

Projected counting and sampling are fundamental prob-
lems in computer science with a wide variety of applications
ranging from network reliability [9], neural network veri-
fication [1], computational biology [25], and software and
hardware testing [21]. For example, given a neural network
𝒩 and a property 𝜓, the problem of estimating how often
the network satisfies the property 𝜓 reduces to projected
counting [1].

From a theoretical viewpoint, projected counting is #NP-
complete; it is worth remarking that the problem of proposi-
tional model counting is #P-complete [30], and it is known
that #P ⊆ #NP. The hardness of #P (and #NP) motivated
efforts towards approximation methods with (𝜀, 𝛿)-guarantees.
The state of the art approximate techniques for counting and
sampling are hashing-based [5–7, 28, 29], seeking to combine
the power of universal hashing with SAT solving.

The core idea of hashing-based counting techniques is to
employ pairwise independent hash functions, also known as
strongly universal hash functions, to partition the solution
space into roughly equal small cells of solutions and then pick
a cell randomly. The number of solutions in a cell can then be
determined exactly by enumerating the solutions in the cell
one by one, in case the cell is small. The number of solutions
of the formula is then estimated as the number of solutions
of a randomly chosen small cell multiplied by the number of
cells. In case of sampling, one enumerates the solutions in
the cell and chooses one of the solutions at random.

To achieve estimates with rigorous (𝜀, 𝛿)-guarantees (for-
mally defined in Section 2), we rely on XOR-based 3-wise
independent hash functions. A randomly picked hash func-
tion ℎ : {0, 1}𝑛 ↦→ {0, 1}𝑚 is explicitly represented as a
conjunction of 𝑚 randomly chosen XOR constraints, where
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each constraint is constructed by picking every variable with
probability 1

2
. Therefore, the expected size of each XOR is 𝑛

2

where 𝑛 = |𝒫|. Consequently, the SAT solver is invoked to
find solutions of a formula expressed as conjunction of the
original formula, 𝜙, and the XOR constraints.

Runtime performance of hashing-based counting and sam-
pling techniques is primarily determined by the time taken
by the SAT solver as over 99% of the time is spent inside
SAT calls. Accordingly, the past decade has witnessed a
sustained effort in designing sparse XOR-based hash func-
tions [7, 11, 12, 19]. An important advance in this direction
was achieved by Chakraborty et al. [7], who proposed the
notion of independent support and observed that one can
construct XORs only over the given independent support. It
is worth remarking that Chakraborty et al. had defined the
notion of independent support 𝒫 = 𝑋 but one can see that
the notion easily generalizes to arbitrary 𝒫.

1.2 Techniques to Identify Independent
Support

Ivrii et al. [14] showed that the problem of computation
of Minimal Independent Support can be reduced to Group
Minimal Unsatisfiable Subset (GMUS), and the correspond-
ing tool, MIS, was shown to scale to moderately complex
instances. Concurrently, Lagniez et al. [15, 16] published a pre-
processing technique, B+E, that combines the assumption-
based framework offered by modern CDCL solvers with
Padoa’s theorem [23] to identify an independent support.
An important conceptual viewpoint put forth by Lagniez et
al. was the argument of eschewing the search for minimal
independent support and instead focus on efficiently finding
an independent support that may not be necessarily minimal.

1.3 Our Contributions

Our primary contribution is the design of an efficient frame-
work, called Arjun, to identify independent support. Arjun
consists of two phases. The first phase employs a syntactic
gate recovery-based strategy, while the second phase is based
on the tight integration of the standard assumption-based
CDCL framework with the invocations needed to execute on
Padoa’s Theorem [23].

To demonstrate the efficacy of our approach, we perform
a detailed empirical analysis over an extensive set of 1896
benchmarks arising from a diverse set of domains and em-
ployed in the analysis of counting and sampling techniques.
We first showcase that with a timeout of 5000 seconds, Arjun
can compute independent support for 358 more instances
than the state of the art tool, MIS.

We observe that ApproxMC4 augmented with Arjun can
count 1799 benchmarks, achieving an improvement of 576
benchmarks over ApproxMC4. Similarly, we observe that
UniGen3 augmented with Arjun can sample 1372 benchmarks,
achieving an improvement of 335 benchmarks within the same
time limit of 5000s. Furthermore, we observe a significant im-
provement in runtime performance as well, in particular, the

PAR-2 scores[2]2 for ApproxMC4 and UniGen3 augmented
with Arjun are 575 and 2861 while the PAR-2 scores for
ApproxMC4 and UniGen3 are 3717 and 4678, respectively.

Organization. The rest of the paper is organized as fol-
lows: We provide a detailed background in Section 2 and
then introduce related work in Section 3. We then present
a detailed algorithmic description of Arjun in Section 4. We
present an extensive empirical evaluation in Section 5 and
finally conclude in Section 6.

2 BACKGROUND

Given a directed graph 𝐺 = (𝑉,𝐸), a feedback vertex set
𝑆 ⊆ 𝑉 is the set of vertices whose removal makes the graph
acyclic. For an edge 𝑒 = (𝑢, 𝑣), we say the edge 𝑒 is outgoing
from 𝑢 and incoming to 𝑣. For a directed graph 𝐺, we use
Root(𝐺) to denote the set of vertices in 𝐺 which do not have
any incoming edge.

Let 𝑋 = {𝑥1, 𝑥2 . . . 𝑥𝑛} be the set of Boolean variables.
Let a literal be a Boolean variable or its negation. A formula,
𝜙, defined over 𝑋 is known as a Conjunctive Normal Form
(CNF), if 𝜙 is a conjunction of clauses, where each clause is
disjunction of literals.

A satisfying assignment 𝜎 of 𝜙 is a mapping of 𝑋 → {0, 1},
such that 𝜙 evaluates True at 𝜎. We often represent 𝜎 as
the set of literals. We use 𝜎 |= 𝜙 to denote 𝜎 as a solution
or a satisfying assignment of 𝜙. Furthermore, for 𝒫 ⊆ 𝑋,
𝜎↓𝒫 represents the assignment of variables restricted to 𝒫.
We denote the set of all witnesses of 𝜙 by 𝑠𝑜𝑙(𝜙), and use
𝑠𝑜𝑙(𝜙)↓𝒫 to indicate the projection of 𝑠𝑜𝑙(𝜙) on 𝒫. We denote
the subformula of 𝜙 that only contains clauses with the literal
𝑥 by 𝜙𝑥. We use the standard connectives ∨ for boolean OR,
and ∧ for boolean AND functions. We use the notation 𝜙|𝑥
to denote the formula 𝜙 when 𝑥 = ⊤.
Example: consider𝑋 = {𝑥1, 𝑥2, 𝑥3} and let 𝜎 = (𝑥1,¬𝑥2, 𝑥3)
(implying that 𝑥1 and 𝑥3 map to True while 𝑥2 maps to False).
Let 𝒫 = {𝑥1, 𝑥2}, then 𝜎↓𝑃 = {𝑥1,¬𝑥2}.
Example 2: consider 𝜙 = {𝑥1 ∨ 𝑥3,¬𝑥1 ∨ 𝑥3 ∨ 𝑥5, 𝑥4 ∨ 𝑥5},
then 𝜙𝑥3 |𝑥1 = {𝑥3 ∨ 𝑥5}.

2.1 Definability and Independent Support

Definition 1. A subset of variables ℐ ⊆ 𝒫 is an inde-
pendent support of 𝒫; if ∀𝜎1, 𝜎2 ∈ 𝑠𝑜𝑙(𝜙), we have 𝜎1↓ℐ =
𝜎2↓ℐ =⇒ 𝜎1↓𝒫 = 𝜎2↓𝒫

Furthermore, ℐ ⊆ 𝒫 is called minimal independent sup-

port of 𝒫 if there does not exist ℐ̂ ⊂ ℐ such that ℐ̂ is an
independent support.

Observe that if ℐ is an independent support of 𝒫, then
we have |𝑠𝑜𝑙(𝜙)↓ℐ | = |𝑠𝑜𝑙(𝜙)↓𝒫 |. The notion of independent
support is related to the classical notion of definability. To
this end, we first present the following two equivalent notions
of definability.

2PAR-2 scores are used in the SAT competitions to measure perfor-
mance. Each benchmark contributes a score that is the number of
seconds used to finish (e.g. solve, count, sample) it, or in case of a time-
out or memory out, twice the timeout in seconds. We then calculate
the average score for all benchmarks, giving PAR-2.
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Definition 2 (Implicit Definability). A variable 𝑥 ∈ 𝒫
is implicitly defined by ℐ for the formula 𝜙 if and only if
∀𝜏 ∈ 2ℐ , we have 𝜙 ∧ 𝜏 |= 𝑥 or 𝜙 ∧ 𝜏 |= ¬𝑥.

Definition 3 (Explicity Definability). A variable 𝑥 ∈
𝒫 is explicitly defined by ℐ for the formula 𝜙 if and only if
there exists 𝜑(ℐ) such that 𝜙 |= 𝑥↔ 𝜑(ℐ)

Lemma 2.1 (Beth’s Theorem [3]). A variable 𝑥 ∈ 𝒫 is
explicitly defined by ℐ for the formula 𝜙 if and only if 𝑥 is
implicitly defined by ℐ for the formula 𝜙.

Since implicit and explicit definability are equivalent, we
can omit referencing them and simply make statements such
as: 𝑥 is defined by ℐ for the formula 𝜙. Furthermore, the
following remark follows from the notion of Independent
support.

Remark 1. If ℐ is an independent support of 𝒫 then all the
variables 𝒫 ∖ ℐ are defined by ℐ.

2.2 Counting and Sampling

The problem of propositional model counting is to com-
pute |𝑠𝑜𝑙(𝜙)| for a given CNF formula 𝜙. A probably ap-
proximately correct (or PAC) counter is a probabilistic al-
gorithm ApproxCount(·, ·, ·) that takes as inputs a formula
𝜙, a tolerance 𝜀 > 0, and a confidence 1 − 𝛿 ∈ (0, 1], and

returns a count 𝑐 with (𝜀, 𝛿)-guarantees, i.e., Pr
[︁
|𝑠𝑜𝑙(𝜙)|
(1+𝜀)

≤

𝑐 ≤ (1 + 𝜀)|𝑠𝑜𝑙(𝜙)|
]︁
≥ 1 − 𝛿. Projected model counting is

defined analogously using 𝑠𝑜𝑙(𝜙)↓𝒫 instead of 𝑠𝑜𝑙(𝜙), for a
given projection set3 𝒫 ⊆ 𝑋.

A uniform sampler outputs a solution 𝑦 ∈ 𝑠𝑜𝑙(𝜙) such that
Pr[𝑦 is output] = 1

|𝑠𝑜𝑙(𝜙)| . An almost-uniform sampler relaxes

the guarantee of uniformity and in particular, ensures that
1

(1+𝜀)|𝑠𝑜𝑙(𝜙)| ≤ Pr[𝑦 is output] ≤ 1+𝜀
|𝑠𝑜𝑙(𝜙)| .

2.3 The solve Algorithm of MiniSat

The second phase of Arjun focuses on the algorithmic engineer-
ing in the assumption-based CDCL framework. Therefore,
to provide context to our contribution, we provide a brief
overview of the standard assumption-based CDCL frame-
work. To this end, the pseudocode sketch for solve(assumps)
function is shown in Algorithm 1, presented in the style of
the seminal MiniSat paper [10].

The solve(assumps) algorithm makes use of the following
standard data structures and subroutines:

branch depth current decision level, incremented every time
the subroutine new decision level() is called.

backtrack until(·) subroutine to perform the backtracking to
the level given as the argument.

pick branch literal(·) picks an unassigned variable and corre-
sponding value to be assigned. Typically, state of the
art solvers use variants of VSIDS [18] to pick a branch
variable and polarity caching [24] to decide the polarity
of the literal.

3Projection set has been referred to as sampling set in prior work [7, 20]

value(·) value of the literal assigned currently. If a variable
𝑥 is assigned True, then value(x) returns True while
value(¬x) returns False.

analyze conflict(·) Performs the conflict analysis and adds
the learnt clause

should restart() returns True or False based on the underlying
restart policy

We now provide a quick overview of solve(assumps). First
observe that there is an outer while loop 1– 27 and the
algorithm exits either when a satisfying assignment is found
or it can conclude that the formula is UNSAT. As noted
earlier, we run CDCL loops up to a fixed number of conflicts.
From our perspective, we focus on the lines 3– 10 wherein the
algorithm inserts the assumptions into its decision queue as
if it was a decision. Note that subsequent to each insertion of
an assumption, a full, until-fixedpoint propagate() is called,
on line 18.

Algorithm 1 solve(assumps)

1: while True do
2: branch ← None

3: for i← branch depth; i < assumps.size() and branch is
None; i++ do

4: lit← assumps[i]
5: if value(lit) is False then
6: backtrack until(0); return UNSAT

7: if value(lit) is True then
8: new decision level() ◁ Fake decision level

9: continue

10: branch← lit
11: if branch is None then

12: branch← pick branch literal()
13: if branch is None then ◁ Solution found

14: save assignment();backtrack until(0); return SAT

15: new decision level()
16: enqueue(branch)
17: prop:

18: ret← propagate()
19: if ret = conflict then
20: analyze conflict()
21: if found empty conflict() then

22: backtrack until(0); return UNSAT

23: backtrack until(compute backjump level())
24: go to prop

25: if should restart() then backtrack until(0)

26: if conflict limit() then

27: backtrack until(0); return UNKNOWN

3 RELATED WORK

Padoa’s theorem provides a necessary and sufficient condition
to determine whether 𝑥 is defined by ℐ for the formula 𝜙.
Let 𝜙(𝑋) be defined on 𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛}, and 𝒫 be of
size 𝑡. Without loss of generality, let 𝒫 = {𝑥1, 𝑥2, . . . 𝑥𝑡}. We

create another set of fresh variables 𝒫 = {𝑦1, 𝑦2, . . . 𝑦𝑡}. Let
𝜙(𝒫 ↦→ 𝒫) represent the formula where every 𝑥𝑖 ∈ 𝒫 in 𝜙 is

replaced by 𝑦𝑖 ∈ 𝒫.
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Lemma 3.1 (Padoa’s Theorem [23]).

𝜓(𝑋,𝒫, 𝑖) :=𝜙(𝑋) ∧ 𝜙(𝒫 ↦→ 𝒫) ∧
𝑡⋀︁

𝑗=1
𝑗 ̸=𝑖

(𝑥𝑗 ↔ 𝑦𝑗) ∧ 𝑥𝑖 ∧ ¬𝑦𝑖

A variable 𝑥𝑖 ∈ 𝒫 is defined by ℐ for the formula 𝜙 iff

𝜓(𝑋,𝒫, 𝑖) is unsatisfiable.

Remark 2. For a given formula 𝜙, if variable 𝑥𝑖 ∈ 𝒫 is
defined by ℐ and a variable 𝑥𝑗 ∈ ℐ is defined by ℐ ∖ 𝑥𝑗, then
𝑥𝑖 is defined by ℐ ∖ 𝑥𝑗.

Combining the above observation with Padoa’s theorem,
Lagniez et al. [15] proposed an iterative procedure that per-
forms |𝒫| calls to a SAT oracle to determine a minimal
independent support. To improve the efficiency, they propose
to invoke a SAT solver with a set number of conflicts and to
treat SAT or timeout as equivalent. Note that the presence
of a pre-defined limit on conflicts causes the loss of guarantee
of minimality for the independent support that is returned
by the technique. However, such a loss of minimality is at the
gain of efficiency in identifying a small enough independent
support. Based on their paper, [15] published the tool B+ E
that performs the extraction of minimal independent support
given an input CNF.

In another line of work, Ivrii et al. [14] reduced the problem
of minimal independent support to Group Minimal Unsat-
isfiable Subset (GMUS) [17]. While the past decade has
witnessed significant advances in the development of efficient
GMUS tools, scalability remains a challenge. As a result,
while Ivrii et al’s proposed tool, MIS, works exceedingly well
for easy- to moderate-complexity formulas, it has difficulties
with harder CNF formulas.

Recently, Slivovsky [27] observed that the resolution proof

for unsatisfiability of 𝜓(𝑋,𝒫, 𝑖) can be employed to generate
the definition 𝜑𝑖 and 𝑥𝑖 such that 𝜙 |= 𝑥𝑖 ↔ 𝜑𝑖(ℐ). Fur-
thermore, Slivovsky used all such extracted 𝜑𝑖-s to perform
pre-processing in the context of QBF.

4 ELEMENTS OF A FAST
INDEPENDENT SUPPORT
CALCULATOR

In this section, we delve into the primary technical contribu-
tion of this paper: Arjun, an efficient technique to compute
independent support. Arjun consists of two phases. Each
phase takes the formula 𝜙 and a projection set 𝒫 as input
and returns a set ℐ such that ℐ ⊆ 𝒫 is an independent sup-
port of 𝒫. The two phases can be composed sequentially, by
feeding the output of one phase as an input projection set to
another phase.

The first phase employs a gate identification-based strat-
egy, while the second phase is based on a tight integration
of assumption-based framework to efficiently perform invo-
cations based on Padoa’s Theorem. It is worth emphasizing
that while Beth’s theorem asserts that both implicit and
explicit definability are equivalent notions, our framework
seeks to exploit the observation that there exist two classes

of definable (or dependent) variables: one for which it is easy
to extract their explicit definitions while for the other class
of variables, we rely on the check for implicit definability via
Padoa’s Theorem.

4.1 Explicit Definability-based
Identification

Given a formula 𝜙 and a projection set 𝒫, we focus on finding
the subset of variables ℐ ⊆ 𝒫 along with the set of definitions
Φ such that for every 𝑥 ∈ ℐ, there is a corresponding definition
𝜑 ∈ Φ such that 𝜑 is defined over ℐ.4 For example, the set
of clauses {¬𝑎 ∨ 𝑏,¬𝑎 ∨ 𝑐, 𝑎 ∨ ¬𝑏 ∨ ¬𝑐} define variable 𝑎 as
𝑎 = 𝑏 ∧ 𝑐 (i.e. an AND gate). Hence, if 𝑎, 𝑏, 𝑐 ∈ 𝒫 then we
could set ℐ to be 𝒫 ∖ 𝑎.

We observe that syntax-based gate identification tech-
niques such as [22] can be employed on the CNF to efficiently
recover an incomplete set of definitions. Given the set of such
definitions, we can extract ℐ and Φ with the desired proper-
ties. Our explicit definability-based identification focuses on
two set of gates: AND (∧) and XOR (⊕) gates. We detect
AND gates of length two while we detect XOR gates of length
up to five, both over literals rather than variables.

Our AND gate detection algorithm, inspired by [13] works
up to length two only, since 2-long AND gates account for the
overwhelming set of AND gates present in the benchmarks
of interest. Since we focus on variables rather than literals,
detection of OR gates is not required, since an OR gate is
equivalent to an AND gate on the opposite literals due to De
Morgan’s laws [8].

In case of XOR gates, we rely on the bloom-filter based
XOR recovery algorithm proposed by [29]. We instantiate
this recovery algorithm to find XORs of length up to five
in order to limit potential explosion of search space. Unlike
AND gates, the identification of XOR equation does not
put restrictions on the outputs and inputs. In particular,
observe that an XOR ℓ1 ⊕ ℓ2 ⊕ ℓ3 = 1 can be rewritten in
the following ways: (1) ¬ℓ1 = ℓ2 ⊕ ℓ3, (2) ¬ℓ2 = ℓ1 ⊕ ℓ3, and
(3) ¬ℓ3 = ℓ1 ⊕ ℓ2. Therefore, given an XOR of length 𝑘, we
extract 𝑘 definitions.

Algorithm 2 GreedyIndSearch(gates,𝒫)
1: SortInc(𝒫, incidence) ◁ Most likely dependent first
2: for 𝑢 ∈ 𝒫 do ◁ Take most likely dependent variable
3: for 𝑔 ∈ gates[u] do
4: OK ← True
5: for 𝑣 ∈ 𝑔.literals do
6: if 𝑣 /∈ 𝒫 then ◁ Could lead to cycle, skip
7: OK ← False
8: break
9: if OK then

10: 𝒫 ← 𝒫 ∖ 𝑢
11: break

4A possible method for computing definitions would be to rely on
Slivovky’s observation of extractions of definitions from the resolution
proofs but such a technique is computationally expensive
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Algorithm 3 ExplicitSearch(𝜙,𝒫)
Step 1 Build a list of gate-definitions wherein for every gate

𝑔 is represented as a tuple of the form (ℓ, op, litList)
such that ℓ = op(litList), i.e., literal ℓ can be expressed
as output of the gate corresponding to the operator op
over the literal list litList.

Step 2 Construct a directed graph 𝐺 = (𝑉,𝐸) where there
is a vertex 𝑣 ∈ 𝑉 for every variable 𝑥 ∈ 𝒫, and for every
gate (ℓ, op, litList), we have an edge from variables in
litList to the variable of ℓ. It is worth emphasizing that
the gates are defined over litList.

Step 3 Compute feedback vertex set 𝑊 of 𝐺 in a greedy
fashion and return ℐ =𝑊 ∪ Root(𝐺) wherein Root(𝐺)
corresponds to the set of vertices in 𝐺 without any
incoming edges.

Irregular Gates. While finding AND and XOR gates syntacti-
cally is relatively straightforward, there are many possible
other gates. To recover an irregular gate with output 𝑥, we can
check the unsatisfiability of the formula = {𝜙𝑥|¬𝑥 ∪ 𝜙¬𝑥|𝑥},
as per [4]. If calling a SAT solver on returns UNSAT, we
know that 𝑥 is definable by the variables in .

While computing the unsatisfiable subset of would allow us
to recover the inputs of these gates (and use Algorithm 2), this
would be expensive. Instead, we order literals in 𝒫 according
to their incidence, and run the irregular gate detection on
them one by one, restricted to 𝒫 as inputs. More specifically,
to check if 𝑥 is definable, we compute the formula 𝜓 containing
all clauses in 𝜙 that contain only variables from 𝒫, and
check whether {𝜓𝑥|¬𝑥 ∪ 𝜓¬𝑥|𝑥} is UNSAT. If it is, we can
safely remove variable 𝑥 from 𝒫. Notice that computing 𝜙
is cheap given occurrence lists, maintained by all modern
SAT solvers [10]. Given 𝜙, computing 𝜓 is straightforward
via a check on all clauses’ literals in 𝜙. In order to reduce
the computational overhead, we restrict the sub-solver to a
limited number of conflicts (specifically, 100), to try to prove
UNSAT.

The ExplicitSearch algorithm. Once the gates are recovered,
we represent them in the obvious fashion by a graph, and
compute the feedback vertex set of the graph. This latter is
done by performing a greedy search to compute 𝑊 ∪Root(𝐺)
wherein W is a feedback vertex set of 𝐺. While ideally, we
would like𝑊 to be a minimal feedback vertex set, we trade off
the minimality for runtime performance. The key strategy is
to sort the vertices according to the number of edges incident
onto them; i.e., we observe that the higher the number of
edges incident upon a vertex 𝑢, the higher likelihood of 𝑢 to
belong to ℐ. We present the pseudocode of the greedy search
in Algorithm 2. The algorithm GreedyIndSearch relies on the
array incidence that is computed for each variable 𝑢 as the
number of clauses containing 𝑢 or ¬𝑢 in 𝜙.

4.2 Implicit Definability-based
Identification

As noted in Section 2, Lagniez et al. observed that one can
iteratively identify independent support. We first extend
Lagniez et al.’s proposal to handle projection set and present
the resulting pseudocode, called SimpleSearch, in Algorithm 4.

Algorithm 4 SimpleSearch(𝜙,𝒫)
1: 𝑌 ← CreateNewVars(𝑋); 𝑍 ← CreateNewVars(𝒫)
2: 𝜓 ← 𝜙(𝑋) ∧ 𝜙(𝑋 ↦→ 𝑌 ) ∧

⋀︀|𝒫|
𝑖=1(𝑧𝑖 → (𝑥𝑖 = 𝑦𝑖))

3: solver.addConstraint(𝜓)
4: unknown← {1, 2, . . . |𝒫|}; ℐ ← ∅

◁ Sort most likely dependent last
5: sortDesc(unknown, incidence)
6: while unknown ̸= ∅ do
7: assumps.clear()

◁ Take most likely dependent variable
8: index← unknown.pop()
9: for j ∈ ℐ do assumps.append(𝑧𝑗)

10: for j ∈ unknown do assumps.append(𝑧𝑗)

11: assumps.append(𝑥index)
12: assumps.append(¬𝑦index)
13: ret← solver.solve(assumps)
14: if ret ̸= UNSAT then ℐ.append(index)
15: return ℐ

SimpleSearch takes in a formula 𝜙 and a projection set
𝒫, and returns the independent support ℐ. Without loss of
generality, we assume that 𝒫 = {𝑥1, 𝑥2, . . . 𝑥|𝑃 |}. The key
idea is to construct 𝜓 and perform iterative solve queries
over 𝜓. The standard method is to use assumption-based
framework where the solver is required to solve the formula
under the set of assumptions expressed as assignment to
variables. In SimpleSearch, we maintain two sets: unknown,
the set of variables that are yet to be classified as dependent
or independent and ℐ, the set of variables that we have
classified as belonging to the independent support. As will be
observed later, we would ideally like to sort the variables in
such a way that the variables belonging to the independent
support are queried at the very end.

Note that variable 𝑥index can be defined in terms of unknown∪
ℐ if and only if 𝜓∧𝑥index∧¬𝑦index is UNSAT under the assump-
tion of setting all 𝑧𝑖 ∈ unknown∪ ℐ to True. Since some SAT
calls may be very expensive, instead of invoking the solver to
completion, we set a cutoff on the number of conflicts, and
therefore, the solver may return SAT, UNSAT, or timeout.
To account for timeout, we check, in line 14, whether ret ̸=
UNSAT instead of checking ret = SAT.

We now seek to understand the key bottleneck for scalabil-
ity of SimpleSearch: the call to SAT solver on line 13. To this
end, we first seek to understand how modern CDCL-based
SAT solvers implement the solve procedure.

Observe that every invocation of solve on line 13 of SimpleSearch
would require insertion of the set of assumptions of the size
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Algorithm 5 IntegratedImplicit(𝜙, 𝑃 )

1: 𝑌 ← CreateNewVars(𝑋); 𝑍 ← CreateNewVars(𝒫)
2: 𝜓 ← 𝜙(𝑋) ∧ 𝜙(𝑋 ↦→ 𝑌 ) ∧

⋀︀|𝑃 |
𝑖=1(𝑧𝑖 → (𝑥𝑖 = 𝑦𝑖))

3: solver.addConstraint(𝜓)
4: unknown← {0, 1, 2, . . . |𝑃 | − 1}; ℐ ← ∅
5: sortDesc(unknown, incidence)
6: for 𝑖 ∈ unknown do assumps.push back(𝑧𝑖)

7: while True do
8: start:

9: branch ← None
10: for i← branch depth; i < assumps.size() AND branch

is None; i++ do
11: lit ← assumps[i]; index← 𝑖+ 1
12: if value(lit) is False then
13: assumps.pop back(); assumps.pop back()
14: if assumps.size() = ℐ.size() then return ℐ
15: assumps.push back(𝑥index)
16: assumps.push back(¬𝑦index)
17: continue
18: if value(lit) is True then
19: new decision level()
20: continue
21: branch ← lit
22: if branch is None then
23: branch ← pick branch()
24: if branch is None OR conflict limit() then
25: assumps.pop back(); assumps.pop back()
26: ℐ.append(𝑥index)
27: splice ← ℐ.size()
28: assumps.insert(splice, 𝑧index)
29: backtrack until(splice)
30: if assumps.size() = ℐ.size() then return ℐ
31: assumps.push back(𝑥index)
32: assumps.push back(¬𝑦index)
33: go to start

34: new decision level()
35: enqueue(branch)
36: prop:

37: ret ← propagate()
38: if ret = conflict then
39: analyze conflict();
40: backtrack until(compute backjump level())
41: go to prop

42: if should restart() then
43: backtrack until(assumps.size())

|ℐ∪unknown| and the resulting propagations. Since we invoke

solve |𝒫| times, the underlying solver must deal with |𝒫|2
2

insertions and the corresponding propagations. To put this
into perspective, if |𝒫| = 50000, then we have over a billion
calls to propagate, a relatively expensive operation. At this
point, observe that the variable appearing first in unknown is
inserted and propagated for all except one solve call. There-
fore, we focus on addressing the performance bottleneck via

eliminating redundant work. To this end, the key idea is
to pursue a tight integration of SimpleSearch and the solve
algorithm, combining the two into a single algorithm, where
solve is the algorithm as per the seminal MiniSat paper [10].

The pseudocode for this novel integrated approach, called
IntegratedImplicit, is presented in Algorithm 5. We assume
that 𝜙 is satisfiable, else ℐ = ∅ can be returned. Similar to
SimpleSearch, we construct the formula 𝜓 based on the input
formula 𝜙. The high-level structure of IntegratedImplicit is
similar to SimpleSearch with crucial difference arising in the
low-level technical details of how to handle the cases when
UNSAT, SAT, or the timeout limit is reached.

We now focus on the UNSAT case, i.e., when 𝑥index is
shown to be dependent (lines 12– 17). The key observation

is that whenever 𝜙 is satisfiable, then 𝜓 ∧
⋀︀index

𝑖=1 𝑧𝑖 is sat-

isfiable. (Observe that {𝑧𝑖}index𝑖=1 is conjuncted via assumps).

Therefore, if 𝜓 ∧
⋀︀index

𝑖=1 𝑧𝑖 ∧ 𝑥index ∧ ¬𝑦index is unsatisfiable,
then we need to only remove the three assumptions, namely
{𝑥index,¬𝑦index, 𝑧index} and do not need to backtrack to decision
level zero.

In case of SAT (i.e., no more variables to branch on) or
when the conflict limit is reached, we want to insert 𝑧index
into our assumps such that it is never popped during the rest
of the execution. To this end, we insert 𝑧index at the index
determined by the current size of ℐ and backtrack there, then
continue running.

To summarize, IntegratedImplicit effectively avoids back-
tracking more than 3 levels except in case of (1) a regular
conflict (2) restarting, or (3) an independent variable is found.
In case of a restart, SAT solvers normally go back to decision
level 0 but here, that would deterministically re-create what
has already been decided and propagated until decision level
assumps.size(), so we go back there instead. The usage of
sorting of variables based on incidence, defined as the num-
ber of clauses containing the variable or its negation in 𝜙 as
per [15] ensures that in practice, dependent variables (which
are typically the vast majority of variables) are popped first.
Therefore, in practice, we achieve a reduction from quadratic
to linear in the number of propagation calls.

4.3 Arjun: Putting It All Together

Our proposed technique, Arjun, consists of combining the
two phases ExplicitSearch and IntegratedImplicit, sequentially.
As noted earlier, both GreedyIndSearch and IntegratedImplicit
take a formula 𝜙 and a projection set 𝒫 and return (𝜙, ℐ),
where ℐ is the independent support of 𝒫. Observe that if ℐ1
is independent support of 𝒫 and ℐ2 is independent support of
ℐ1, then ℐ2 is independent support of 𝒫. Therefore, the two
phases can be combined in an arbitrary order as the output
of one phase can be fed as the projection set for another
phase. Our implementation of Arjun invokes ExplicitSearch
before IntegratedImplicit.

Post-processing. In addition to IntegratedImplicit and ExplicitSearch,
our implementation of Arjun involves a post-processing step
focused on identifying don’t cares. We focus on a simple syn-
tactic check, i.e., for a variable 𝑥𝑖, we seek to identify whether
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for every clause 𝐶 that contains literal 𝑥𝑖, there is also a
clause 𝐶′ containing ¬𝑥𝑖 such that 𝐶 ∖ 𝑥𝑖 = 𝐶′ ∖ ¬𝑥𝑖, i.e.,
clauses 𝐶 and 𝐶′ are identical once 𝑥𝑖 and ¬𝑥𝑖 are removed
from them respectively. For example, if the variable 𝑥1 is only
present in the following clauses: {𝑥1 ∨ ¬𝑥2,¬𝑥1 ∨ ¬𝑥2, 𝑥1 ∨
𝑥4 ∨ 𝑥5,¬𝑥1 ∨ 𝑥4 ∨ 𝑥5}, then 𝑥1 is a don’t care. Let the set
of all such don’t cares be 𝑀 , then we can simply perform
projected counting of the formula 𝜙 over the independent
support ℐ ∖𝑀 , and multiply the count by 2|𝑀| to get the
correct count.

5 EMPIRICAL EVALUATION

We developed a prototype implementation of Arjun. The
experiments were conducted on a high performance computer
cluster, each node consisting of 2xE5-2690v3 CPUs with
2x12 real cores and 96GB of RAM, i.e 4GB limit per run.
As both the tool5 and the input instances [20] are available
open-source, the below experiments are reproducible.

To evaluate the performance and the quality of independent
support computed by Arjun, we conducted a comprehensive
study on the state of the art counter ApproxMC4 and sampler
UniGen3. ApproxMC4 is a highly competitive model counter, a
version of which won the 2020 model counting competition in
the projected counting track. The 2021 competition sought to
focus on exact techniques and consequently, changed 𝜀 = 0.1
to 𝜀 = 0.01. Even then, ApproxMC4-based entry achieved 3rd
place. As described during the competitive event of SAT 2021,
had 𝜀 been set to 0.05, the ApproxMC4-based entry would
have won the competition. All prior applications and bench-
marking for approximation techniques have been presented
with 𝜀 = 0.8 in the literature.

For our evaluation, we used 1896 benchmarks as released
by Soos and Meel [20]. It comprises of a wide range of applica-
tion areas including probabilistic reasoning, plan recognition,
DQMR networks, ISCAS89 combinatorial circuits, quantified
information flow, program synthesis, functional synthesis,
logistics, and the like. The past few years have witnessed
a surge of interest in projected counting and sampling; ac-
cordingly, 801 out of 1896 benchmarks specify a projection
set. These benchmarks are tailored to counting and sampling,
and are satisfiable. However, Arjun correctly handles UNSAT
instances, returning an empty independent support, if it does
not time out.

The prior state of the art approach, B+ E, computes inde-
pendent support only for the case when 𝒫 = 𝑋. On the other
hand, MIS by [14] can compute independent support for an
arbitrary 𝒫 but is often significantly slower than B+ E for
the case when 𝒫 = 𝑋. Therefore, to ensure a comprehensive
comparison, we experiment with both B+ E and MIS. When
we perform empirical evaluation of Arjun vis-a-vis B+ E,
we ignore the 𝒫 supplied with the instance and instead set
𝒫 = 𝑋. In case of empirical evaluation with MIS, we use the
𝒫 as supplied by the instances.

5CryptoMiniSat (https://github.com/msoos/cryptominisat) SHA1 rev.
5b1a027a2e08, ApproxMC (https://github.com/meelgroup/approxmc)
SHA1 rev. 7eaca7c96d69, Arjun (https://github.com/meelgroup/arjun)
SHA1 rev. 75b83f5428b7
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Figure 1: Arjun vs. MIS independent support calcula-
tion times

To understand the impact of independent support com-
putation on ApproxMC, we cannot ignore 𝒫 since under
standard complexity theoretic assumptions, transformation
to an equivalent instance without projection set (i.e., set-
ting 𝒫 = 𝑋) would entail an exponential blow-up as such a
transformation amounts to quantifier elimination. Therefore,
our empirical evaluation performs comparisons of ApproxMC4
and UniGen36 preceded by Arjun and MIS respectively, owing
to B+ E’s lack of support for projection. To put our perfor-
mance improvements in perspective, we also evaluated the
performance of ApproxMC3 and UniGen2 on our benchmarks.
In line with prior studies, we set 𝜀 = 0.8 and 𝛿 = 0.2 for
all the versions of ApproxMC; in case of (all the versions of)
UniGen, we set 𝜀 = 16.

Research Questions. Our empirical study sought to answer the
following research questions: RQ 1. How does the runtime
performance and the size of independent supports computed
by Arjun compare via-a-vis to prior state of the approaches?
RQ 2. How do different phases affect the runtime perfor-
mance of Arjun? RQ 3. How does the augmentation of Arjun
affect the runtime performance of hashing-based counting
and sampling tools?

Summary of Results. Overall, we observe that Arjun signifi-
cantly outperforms B+ E and MIS in runtime performance.
Furthermore, while we observe the critical importance of both
phases ExplicitSearch and IntegratedImplicit, the empirical
analysis shows that the incremental impact of IntegratedImplicit
is higher than that of ExplicitSearch. We then observe that
ApproxMC4 augmented with Arjun can count 1799 bench-
marks, achieving an improvement of 576 benchmarks over
ApproxMC4. Similarly, we observe that UniGen3 augmented
with Arjun can sample 1372 benchmarks, achieving an im-
provement of 335 benchmarks within the same time limit of
5000s. Furthermore, we observe a significant improvement
in runtime performance as well, in particular, the PAR-2
scores for ApproxMC4 and UniGen3 augmented with Arjun
are 575 and 2861 while the PAR-2 scores for ApproxMC4 and
UniGen3 are 3717 and 4678, respectively.

5.1 Comparison of Arjun with MIS and B+ E
We present the runtime performance of Arjun vis-a-vis MIS
via cactus plot in Figure 1. Observe that while Arjun could

6Latest recommended versions of ApproxMC and UniGen

https://github.com/msoos/cryptominisat
https://github.com/meelgroup/approxmc
https://github.com/meelgroup/arjun
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Figure 3: Computed independent support sizes

compute independent support for 1880 instances, MIS could
do the same for only 1522 instances within the same time
limit. To illustrate the runtime performance difference, Arjun
computed independent support for the same number of in-
stances (i.e. 1522) in under 0.60s that MIS took 5000s.

Even though from complexity theoretic viewpoint, we
cannot ignore 𝒫, we sought to further extensively analyze
performance of Arjun. To this end, we performed empirical
evaluation vis-a-vis B+ E by disregarding the user-provided
projection set and instead setting 𝒫 = 𝑋 due to B+ E’s
inability to perform independent support computation for a
non-trivial 𝒫. We present the runtime performance cactus
plot in Figure 2. While it took 4932 seconds for B+ E to
compute the independent support of all 1752 instances it
could compute, for Arjun it only took 117 seconds to do the
same.

At this point, one may wonder about the size of inde-
pendent supports computed by Arjun, MIS, and and B+ E.
To this end, we present scatterplot of the size of indepen-
dent support found by Arjun, MIS, and B+ E in Figure 3.
For instances where a tool could not compute the indepen-
dent support, we show the default projection set size of the
instance.

5.2 Impact of ExplicitSearch and
IntegratedImplicit

To understand the impact of ExplicitSearch and IntegratedImplicit,
we present the runtime performance of different versions of
Arjun in Figure 4. The curve “Arjun w/o IntegratedImplicit”
refers to the version of Arjun with SimpleSearch instead of
IntegratedImplicit, while “Arjun w/o ExplicitSearch” refers to
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the version of Arjun without explicit definability-based identi-
fication. We make two observations: (1) both phases play an
important role in the performance of the tool, and (2) the im-
pact of IntegratedImplicit is higher than that of ExplicitSearch.

5.3 Impact of Arjun on ApproxMC4
The cactus plot of ApproxMC3, ApproxMC4,MIS+ApproxMC4,
and Arjun+ApproxMC4 (cumulative time) are on Figure 5.
Here, Arjun or MIS was ran first on the benchmark, and the
resulting independent support was provided to ApproxMC4.
Arjun+ApproxMC4 could count 1799 instances while ApproxMC4
and MIS+ApproxMC4 could only count 1223 and 1262 in-
stances, respectively within the same 5000s timeout. Over-
all, we observe an improvement of 576 instances. To put
this into context, we also plot the curve corresponding to
ApproxMC3, which demonstrates significant improvement
Arjun provides relative to ApproxMC4 vs ApproxMC3. Solving
speed improvement is substantial: with a timeout of only 2.24
seconds, Arjun+ApproxMC4 could solve as many instances as
ApproxMC4 on its own under 5000 seconds.

To further compare the runtime on a per instance basis, we
present the scatter plot of Arjun+ApproxMC4 in comparison
with MIS+ApproxMC4 in Figure 6. We observe that on a per
instance basis Arjun+ApproxMC4 is almost always faster than
MIS+ApproxMC4.

This demonstrates the importance of efficient computa-
tional technique that can find small independent support.
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Recall that ApproxMC4 adds XORs over the independent
support in order to perform approximate counting. Hence, a
smaller independent support leads to faster propagation and
on average smaller conflict clauses.

5.4 Impact of Arjun on UniGen3
Figure 7 shows the cactus plot of UniGen2, UniGen3,MIS+UniGen3,
and Arjun+UniGen3 (cumulative time). Overall, Arjun+UniGen3
samples 1372 instances, 316 more than MIS+UniGen3 within
the same 5000s timeout. To put such a performance im-
provement into context, observe that the difference between
UniGen2 and UniGen3 in terms of number of sampled in-
stances is significantly less thanMIS+UniGen3 vs Arjun+UniGen3.

6 CONCLUSION

In this paper, we focused on the problem of computation of
independent support for a given formula owing to its impor-
tance for hashing-based counting and sampling techniques.
Our algorithmic framework, Arjun, consists of two phases that
seek to take advantage of implicit and explicit definability.
The extensive empirical evaluation shows that Arjun achieves
significant performance improvement over prior state of the
art. Furthermore, augmenting with Arjun the state of the
art hashing-based counter ApproxMC4 and sampler UniGen3
leads to significant performance improvements.
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