
Algorithms Transcending the SAT-Symmetry Interface

Markus Anders Mate Soos Pascal Schweitzer

SAT 2023

1 / 26

Boolean Satisfiability

Problem (SAT)
Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

F is always in conjuctive normal form (CNF), e.g., F = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b)

a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {a, c}, {b}}
a disjunction C ∈ F is called a clause
an element l ∈ C is called a literal

2 / 26

Boolean Satisfiability

Problem (SAT)
Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

F is always in conjuctive normal form (CNF), e.g., F = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b)

a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {a, c}, {b}}
a disjunction C ∈ F is called a clause
an element l ∈ C is called a literal

2 / 26

Boolean Satisfiability

Problem (SAT)
Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

F is always in conjuctive normal form (CNF), e.g., F = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b)

a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {a, c}, {b}}

a disjunction C ∈ F is called a clause
an element l ∈ C is called a literal

2 / 26

Boolean Satisfiability

Problem (SAT)
Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

F is always in conjuctive normal form (CNF), e.g., F = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b)

a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {a, c}, {b}}
a disjunction C ∈ F is called a clause

an element l ∈ C is called a literal

2 / 26

Boolean Satisfiability

Problem (SAT)
Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

F is always in conjuctive normal form (CNF), e.g., F = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b)

a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {a, c}, {b}}
a disjunction C ∈ F is called a clause
an element l ∈ C is called a literal

2 / 26

Symmetry Breaking
F

detect symmetries

compute and add symmetry breaking constraints

F ′

F and F ′ equi-satisfiable
F ′ often considerably easier to solve
very effective on some instance types (combinatorics, logistics, ...)
overhead is an issue

3 / 26

Symmetry Breaking
F

detect symmetries

compute and add symmetry breaking constraints

F ′

F and F ′ equi-satisfiable

F ′ often considerably easier to solve
very effective on some instance types (combinatorics, logistics, ...)
overhead is an issue

3 / 26

Symmetry Breaking
F

detect symmetries

compute and add symmetry breaking constraints

F ′

F and F ′ equi-satisfiable
F ′ often considerably easier to solve

very effective on some instance types (combinatorics, logistics, ...)
overhead is an issue

3 / 26

Symmetry Breaking
F

detect symmetries

compute and add symmetry breaking constraints

F ′

F and F ′ equi-satisfiable
F ′ often considerably easier to solve
very effective on some instance types (combinatorics, logistics, ...)

overhead is an issue

3 / 26

Symmetry Breaking
F

detect symmetries

compute and add symmetry breaking constraints

F ′

F and F ′ equi-satisfiable
F ′ often considerably easier to solve
very effective on some instance types (combinatorics, logistics, ...)
overhead is an issue

3 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true
falsify one of the symmetrical options with (x ∨ y)
many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true
falsify one of the symmetrical options with (x ∨ y)
many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true

falsify one of the symmetrical options with (x ∨ y)
many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true
falsify one of the symmetrical options with (x ∨ y)

many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true
falsify one of the symmetrical options with (x ∨ y)
many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking: Example
(x ∨ y) ∧ (x ∨ y)

symmetry (xy)(xy)

symmetry breaking clause (x ∨ y)

(x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

(abc)

a b c

symmetry implies x = true, y = false gives same value as x = false, y = true
falsify one of the symmetrical options with (x ∨ y)
many competing techniques (e.g., dynamic techniques)

I’ll take it from here

4 / 26

Symmetry Breaking

F

detect symmetries

compute and add symmetry breaking constraints

SAT solver

Step 2:
exploitation

Step 1:
detection

5 / 26

Symmetry Breaking

F

detect symmetries

compute and add symmetry breaking constraints

SAT solver

Step 2:
exploitation

Step 1:
detection

5 / 26

Symmetry Breaking

F

detect symmetries

compute and add symmetry breaking constraints

SAT solver

Step 2:
exploitation

Step 1:
detection

5 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

Symmetry Detection: Model Graph

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

symmetries of graph are symmetries of formula (and vice versa)

6 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F

(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}
ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F
(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}
ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F
(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}
ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F
(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}

ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F
(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}
ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (CNF)
bijection of literals ϕ : Lit(F)→ Lit(F) with ϕ(F) = F
(and it should also induce a well-defined bijection on the variables)

Back to our example...

F = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}
ϕ = (x1x2)(x1x2)(y1y2)(y1y2)

ϕ(F) =

{ϕ(x1) ∨ ϕ(y1), ϕ(x2) ∨ ϕ(y2), ϕ(x3) ∨ ϕ(y3), ϕ(x1) ∨ ϕ(x2) ∨ ϕ(x3) ∨ ϕ(z1) ∨ ϕ(z2)} =

{(x2 ∨ y2), (x1 ∨ y1), (x3 ∨ y3), (x2 ∨ x1 ∨ x3 ∨ z1 ∨ z2)} =

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)} =

F

7 / 26

By the way... what are symmetries again? (Graphs)

bijection of vertices ϕ : V → V with ϕ(G) = (ϕ(V), ϕ(E)) = G

8 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)

Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {

(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),

(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),

(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),

(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),

(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),

. . .

9 / 26

Symmetry Detection on Graphs
Input: Graph G

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

Output: All symmetries Aut(G)
Aut(G) = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(x1x3)(x1x3)(y1y3)(y1y3),
(x2x3)(x2x3)(y2y3)(y2y3),
. . .

9 / 26

Tread carefully...

a graph G can have an exponential number of symmetries

symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition

if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G

Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Tread carefully...

a graph G can have an exponential number of symmetries
symmetries Aut(G) form a permutation group under composition
if ϕ and ϕ′ are symmetries, so is ϕ ◦ ϕ′

only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set S ⊆ Aut(G) with 〈S〉 = Aut(G)

Treat groups
by the book!

state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10 / 26

Symmetry Detection: dejavu

I’ve been building the symmetry detection tool dejavu for the past 5 years

it’s fast
it’s fastest on SAT graphs
has one-sided bounded error (does not matter for most applications)

randomness is inherent to the design

automorphisms.org

I cheat using
randomness!

11 / 26

Symmetry Detection: dejavu

I’ve been building the symmetry detection tool dejavu for the past 5 years
it’s fast

it’s fastest on SAT graphs
has one-sided bounded error (does not matter for most applications)

randomness is inherent to the design

automorphisms.org

I cheat using
randomness!

11 / 26

Symmetry Detection: dejavu

I’ve been building the symmetry detection tool dejavu for the past 5 years
it’s fast
it’s fastest on SAT graphs

has one-sided bounded error (does not matter for most applications)

randomness is inherent to the design

automorphisms.org

I cheat using
randomness!

11 / 26

Symmetry Detection: dejavu

I’ve been building the symmetry detection tool dejavu for the past 5 years
it’s fast
it’s fastest on SAT graphs
has one-sided bounded error (does not matter for most applications)

randomness is inherent to the design

automorphisms.org

I cheat using
randomness!

11 / 26

Symmetry Detection: dejavu

I’ve been building the symmetry detection tool dejavu for the past 5 years
it’s fast
it’s fastest on SAT graphs
has one-sided bounded error (does not matter for most applications)

randomness is inherent to the design

automorphisms.org

I cheat using
randomness!

11 / 26

Symmetry Breaking: Refined Picture
F

model F as graph G

run dejavu on G

compute and add symmetry breaking constraints

disjoint decomposition

SAT solver

〈S〉

Step 2:
exploitation

Step 1:
detection

12 / 26

Symmetry Breaking: Refined Picture II
F

model F as graph G

run dejavu on G

row interchangeability pointwise stabilizers orbits disjoint decomposition

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

13 / 26

Symmetry Breaking Sub-Tasks

row interchangeability pointwise stabilizers orbits disjoint decomposition

structural analysis of permutation group

enable efficient production of symmetry breaking clauses
implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

I expensive, make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

14 / 26

Symmetry Breaking Sub-Tasks

row interchangeability pointwise stabilizers orbits disjoint decomposition

structural analysis of permutation group
enable efficient production of symmetry breaking clauses

implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)
I expensive, make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

14 / 26

Symmetry Breaking Sub-Tasks

row interchangeability pointwise stabilizers orbits disjoint decomposition

structural analysis of permutation group
enable efficient production of symmetry breaking clauses
implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

I expensive, make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

14 / 26

Symmetry Breaking Sub-Tasks

row interchangeability pointwise stabilizers orbits disjoint decomposition

structural analysis of permutation group
enable efficient production of symmetry breaking clauses
implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

I expensive, make up majority of runtime in some instances

I not generic, rely on very specific properties of generators

14 / 26

Symmetry Breaking Sub-Tasks

row interchangeability pointwise stabilizers orbits disjoint decomposition

structural analysis of permutation group
enable efficient production of symmetry breaking clauses
implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

I expensive, make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

14 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)}

X

S2 = {(12), (1234)}

7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)}

X

S2 = {(12), (1234)}

7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)}

X

S2 = {(12), (1234)}

7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)} X
S2 = {(12), (1234)}

7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)} X
S2 = {(12), (1234)} 7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)} X
S2 = {(12), (1234)} 7

〈S1〉 = 〈S2〉

What are
transpositions?

7

15 / 26

Symmetry Breaking Sub-Tasks
row interchangeability pointwise stabilizers orbits disjoint decomposition

implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
I expensive, sometimes make up majority of runtime in some instances
I not generic, rely on very specific properties of generators

row interchangeability

56%

symmetry detection

33% other
11%

BreakID on PHP instances

Relies on “transpositions”:
S1 = {(12), (23), (34)} X
S2 = {(12), (1234)} 7

〈S1〉 = 〈S2〉

What are
transpositions?

7 15 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

no algorithm

pointwise stabilizers

Schreier-Sims

orbits

well-known algorithm

disjoint decomposition

recent [Chang, Jefferson, ’20]

Oh I know this!

16 / 26

How could we solve them, exactly?

row interchangeability

orbit ≡ natural symmetric action pointwise stabilizers orbits disjoint decomposition

17 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time

I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations

I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set

I assume production of random elements...
doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)

So... also not quite what we want?

18 / 26

Permutation Group Algorithms: Observations

algorithms are “linear-time”, but not linear-time
I running time is measured in terms of dense permutation representations
I assume existence of a “strong” generating set
I assume production of random elements...

doesn’t make use of graphs or SAT formulas (obviously!)
So... also not quite what we want?

18 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group

2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting?

Yes!

19 / 26

SAT-Symmetry Algorithms
Our computational setting:

1 we have access to both a graph (SAT formula) and corresponding group
2 we want to measure running time in the “encoding size” of graphs and groups

Definition (Joint Graph-Group Pairs)
A graph G and generating S is called a joint graph-group pair, whenever 〈S〉 = Aut(G).

Definition (Instance-linear Running Time)
Given a SAT formula F , graph G = (V ,E), we call algorithms that run in time
O(|F |+ |V |+ |E |+ enc(S)) instance-linear, where enc(S) := Σp∈S | supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19 / 26

Symmetry Breaking: Refined Picture III
F

model F as graph G

run dejavu on G

joint graph-group pair

orbit ≡ natural symmetric action pointwise stabilizers orbits disjoint decomposition

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

20 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
equivalent symmetric orbits in instance-linear time under “unique cycle assumption”
algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
equivalent symmetric orbits in instance-linear time under “unique cycle assumption”
algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)

equivalent symmetric orbits in instance-linear time under “unique cycle assumption”
algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
equivalent symmetric orbits in instance-linear time under “unique cycle assumption”

algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
equivalent symmetric orbits in instance-linear time under “unique cycle assumption”
algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Algorithms in the Paper

orbit ≡

(X)

natural symmetric action

(X) but not instance-linear

pointwise stabilizers

?

orbits

X

disjoint decomposition

X

finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
equivalent symmetric orbits in instance-linear time under “unique cycle assumption”
algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21 / 26

Finest Disjoint Direct Decomposition: What it’s about

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

〈S〉 = Aut(G)

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2)}
x ’s and y ’s are independent of z ’s

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}
Here they are not?

22 / 26

Finest Disjoint Direct Decomposition: What it’s about

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

〈S〉 = Aut(G)

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2)}
x ’s and y ’s are independent of z ’s

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}
Here they are not?

22 / 26

Finest Disjoint Direct Decomposition: What it’s about

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

〈S〉 = Aut(G)

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2)}

x ’s and y ’s are independent of z ’s

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}
Here they are not?

22 / 26

Finest Disjoint Direct Decomposition: What it’s about

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

〈S〉 = Aut(G)

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2)}
x ’s and y ’s are independent of z ’s

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}
Here they are not?

22 / 26

Finest Disjoint Direct Decomposition: What it’s about

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

〈S〉 = Aut(G)

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2)}
x ’s and y ’s are independent of z ’s

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}
Here they are not?

22 / 26

Finest Disjoint Direct Decomposition: Flip edges

23 / 26

Finest Disjoint Direct Decomposition: Flip edges

23 / 26

Finest Disjoint Direct Decomposition: Flip edges

23 / 26

Finest Disjoint Direct Decomposition: Flip edges

23 / 26

Finest Disjoint Direct Decomposition: Algorithm
1 color vertices with “orbits”, connect vertices of orbit with a path

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

2 flip edges between colors
x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

3 compute connected components

Lemma
Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.

24 / 26

Finest Disjoint Direct Decomposition: Algorithm
1 color vertices with “orbits”, connect vertices of orbit with a path

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

2 flip edges between colors
x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

3 compute connected components

Lemma
Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.

24 / 26

Finest Disjoint Direct Decomposition: Algorithm
1 color vertices with “orbits”, connect vertices of orbit with a path

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

2 flip edges between colors
x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

3 compute connected components

Lemma
Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.

24 / 26

Finest Disjoint Direct Decomposition: Algorithm
1 color vertices with “orbits”, connect vertices of orbit with a path

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

2 flip edges between colors
x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

3 compute connected components

Lemma
Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.

24 / 26

Finest Disjoint Direct Decomposition: Algorithm

we can split generators according to connected components

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}

not independent

→

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(z1z2)(z1z2)}
independent

25 / 26

Finest Disjoint Direct Decomposition: Algorithm

we can split generators according to connected components

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}

not independent

→

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(z1z2)(z1z2)}
independent

25 / 26

Finest Disjoint Direct Decomposition: Algorithm

we can split generators according to connected components

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}

not independent

→

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(z1z2)(z1z2)}
independent

25 / 26

Finest Disjoint Direct Decomposition: Algorithm

we can split generators according to connected components

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}

not independent

→

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(z1z2)(z1z2)}
independent

25 / 26

Finest Disjoint Direct Decomposition: Algorithm

we can split generators according to connected components

x1

x1

x2

x2

x3

x3

y1

y1

y2

y2

y3

y3 z1

z1

z2

z2

c1 c2 c3 c4

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2)(z1z2)(z1z2),
(z1z2)(z1z2)}

not independent

→

S = {
(x1x2x3)(x1x2x3)(y1y2y3)(y1y2y3),
(x1x2)(x1x2)(y1y2)(y1y2),
(z1z2)(z1z2),
(z1z2)(z1z2)}
independent

25 / 26

Summary
F

model F as graph G

run dejavu on G

joint graph-group pair

orbit ≡ (X) natural symmetric action (X) pointwise stabilizers ? orbits X disjoint decomposition X

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

make use of joint graph-group pairs to get fast, generic algorithms and heuristics
work to do to put this in practice (no 1:1 replacement for heuristics!)
want to detect more involved group structures

26 / 26

Summary
F

model F as graph G

run dejavu on G

joint graph-group pair

orbit ≡ (X) natural symmetric action (X) pointwise stabilizers ? orbits X disjoint decomposition X

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

make use of joint graph-group pairs to get fast, generic algorithms and heuristics

work to do to put this in practice (no 1:1 replacement for heuristics!)
want to detect more involved group structures

26 / 26

Summary
F

model F as graph G

run dejavu on G

joint graph-group pair

orbit ≡ (X) natural symmetric action (X) pointwise stabilizers ? orbits X disjoint decomposition X

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

make use of joint graph-group pairs to get fast, generic algorithms and heuristics
work to do to put this in practice (no 1:1 replacement for heuristics!)

want to detect more involved group structures

26 / 26

Summary
F

model F as graph G

run dejavu on G

joint graph-group pair

orbit ≡ (X) natural symmetric action (X) pointwise stabilizers ? orbits X disjoint decomposition X

add symmetry breaking constraints

SAT solver

〈S〉

Step 3:
exploitation

Step 2:
analysis

Step 1:
detection

make use of joint graph-group pairs to get fast, generic algorithms and heuristics
work to do to put this in practice (no 1:1 replacement for heuristics!)
want to detect more involved group structures

26 / 26

	anm0:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

