Algorithms Transcending the SAT-Symmetry Interface

Markus Anders Mate Soos  Pascal Schweitzer

SAT 2023

1/26



Boolean Satisfiability

Problem (SAT)

Input:  Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

2/26



Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

e F is always in conjuctive normal form (CNF), e.g., F =(aV bV c)A(aVc)A(b)

2/26



Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

e F is always in conjuctive normal form (CNF), e.g., F =(aV bV c)A(aVc)A(b)
@ a CNF F can also be written as a set of sets, i.e., F = {{a, b,c},{3,c}, {b}}

2/26



Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

e F is always in conjuctive normal form (CNF), e.g., F =(aV bV c)A(aVc)A(b)
@ a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {3, c},{b}}
@ a disjunction C € F is called a clause

2/26



Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

e F is always in conjuctive normal form (CNF), e.g., F =(aV bV c)A(aVc)A(b)
@ a CNF F can also be written as a set of sets, i.e., F = {{a, b, c}, {3, c},{b}}

@ a disjunction C € F is called a clause

@ an element / € C is called a literal

2/26



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

3/26



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

e F and F’ equi-satisfiable

3/26



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

e F and F’ equi-satisfiable
@ F' often considerably easier to solve

3/26



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

e F and F’ equi-satisfiable
@ F' often considerably easier to solve
@ very effective on some instance types (combinatorics, logistics, ...)

3/26



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

e F and F’ equi-satisfiable
@ F' often considerably easier to solve
@ very effective on some instance types (combinatorics, logistics, ...)

@ overhead is an issue
3/26



Symmetry Breaking: Example
(xVy)A(xVy)

e

symmetry (xy)(Xy)

N

symmetry breaking clause (x V' y)

(xVy) ARVF) A (x V)

4/26



Symmetry Breaking: Example
(xVy)A(xVy)

e

_.-~ symmetry (xy)(xy)

(abc) - \
¥ N\ >

a— ph—C symmetry breaking clause (x V' y)

g

(xVy)AXVY)A(xVY)

4/26



Symmetry Breaking: Example
(xVy)A(xVy)

e

_-- symmetry (xy)(xy)

a— ph—C symmetry breaking clause (x V' y)

g

(xVy)AXVY)A(xVY)

@ symmetry implies x = true, y = false gives same value as x = false, y = true

4/26



Symmetry Breaking: Example

(xVy)A(xVy)

e

_-- symmetry (xy)(xy)

(xVy)AXVY)A(xVY)

@ symmetry implies x = true, y = false gives same value as x = false, y = true
o falsify one of the symmetrical options with (x V' y)

~

-

symmetry breaking clause (x V' y)

~

-

4/26



Symmetry Breaking: Example

(xVy)A(xVy)

e

_-- symmetry (xy)(xy)

(xVy)AXVY)A(xVY)

@ symmetry implies x = true, y = false gives same value as x = false, y = true
o falsify one of the symmetrical options with (x V' y)
@ many competing techniques (e.g., dynamic techniques)

~

-

symmetry breaking clause (x V' y)

~

-

4/26



Symmetry Breaking: Example
(xVy)A(xVy)

e

_.- symmetry (xy)(Xy) I'll take it from here ]

pay ~ N

a— ph—C symmetry breaking clause (x V' y)

g

(xVy)AXVY)A(xVY)

@ symmetry implies x = true, y = false gives same value as x = false, y = true
o falsify one of the symmetrical options with (x V' y)
@ many competing techniques (e.g., dynamic techniques) 426



Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

SAT solver

5/26



Symmetry Breaking

Step 2:
exploitation

~

detect symmetries

~ |

compute and add symmetry breaking constraints

SAT solver

5/26



Symmetry Breaking

Step 1:
detection

Step 2:
exploitation

~

detect symmetries

~ |

compute and add symmetry breaking constraints

SAT solver

5/26



Symmetry Detection: Model Graph

{(Xl \/ﬁ)7 (X2 \/_)72), (X3 V %), (X1 V X2 V X3 V V4 V 22)}

6/26



Symmetry Detection: Model Graph

{(Xl\/yl) (X2\/_V2 X3\/_y3 X1 \/XQ\/X3\/21\/22)}

$44



Symmetry Detection: Model Graph

{(Xl \/ﬁ),(XQ\/)@) (X3\/_y3 X1 \/X2\/X3\/Zl \/22)}

$é8
66888



Symmetry Detection: Model Graph

{GaVn),(eV¥n),(xsVy),(x1VxeVxsVzVz)}
= (=
ONONCO

66888



Symmetry Detection: Model Graph

{(Xl \/ﬁ)7 (X2 \/_)72), (X3 V )73), (X1 V X2 V X3 V V4 V 22)}

6/26



Symmetry Detection: Model Graph

{(Xl \/ﬁ)7 (X2 \/_)72), (X3 V }73), (Xl V X2 V X3 V V4 V 22)}

@ symmetries of graph are symmetries of formula (and vice versa)

6/26



By the way... what are symmetries again? (CNF)
@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}
p = (1) (x2) (y1y2) (V1)2)

7/26



By the way... what are symmetries again? (CNF)
@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}
p = (1) (x2) (y1y2) (V1)2)

p(F) =

{o(xa) Vo), p(x2) V 0(12), p(x3) V ©(¥3), p(x1) V @(x2) V 0(x3) V p(z1) V p(22) } =
{GeVy),(aVvn),(eVy),eViVeVzaVza)=

{(Xl V ﬁ), (X2 V }72), (X3 V %), (Xl V X2 V X3 Vv 4l V 22)} =

F

7/26



By the way... what are symmetries again? (Graphs)

@ bijection of vertices ¢ : V — V with ¢(G) = (¢(V),¢(E)) =G

8/26



Symmetry Detection on Graphs
Input: Graph G

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries Aut(G)

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) = {

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) = {
(x1x3) (x%2%3) (y1y2y3) (V1Y2Y3),

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) = {

(x1x2x3) (x00X3) (Y1y2y3) (V1Y2Y3),
(%) (x32) (y1y2) (1¥2),

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries

Aut(G) = {

(x1xex3) (}x2X3) (y1y2y3) (V1Y2y3),
(xax2) (302) (yy2) (V1Y2),
(2122)(z122),

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) ={

(xixex3) (ax2x3) (y1y2ys) (Vy2ys),
(xx) (ax2) (y1y2) (11y2),
(2122)(7122),

(x133) (3x3) (y1y3) (V1y3),

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) = {
(X1X2X3)(X1X2X3)(Y1Y2Y3)(Y1Y2Y3)>

%2%) (y2ys) (7255).

9/26



Symmetry Detection on Graphs
Input: Graph G

Output: All symmetries
Aut(G) = {
(X1X2X3)(X1X2X3)(Y1Y2Y3)(Y1Y2Y3)>

%2%) (y2ys) (7255).

9/26



Tread carefully...

@ a graph G can have an exponential number of symmetries

10/26



Tread carefully...

@ a graph G can have an exponential number of symmetries

@ symmetries form a under composition

10/26



Tread carefully...

@ a graph G can have an exponential number of symmetries
@ symmetries form a under composition

e if ¢ and ¢’ are symmetries, so is p o ¢’

10/26



Tread carefully...

@ a graph G can have an exponential number of symmetries
@ symmetries form a under composition
e if ¢ and ¢’ are symmetries, so is p o ¢’

@ only write down small subset S which generates

10/26



Tread carefully...

@ a graph G can have an exponential number of symmetries
@ symmetries Aut(G) form a permutation group under composition
e if p and ¢’ are symmetries, so is p o ¢’

@ only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)
Input: Graph G

10/26



Tread carefully...

@ a graph G can have an exponential number of symmetries
@ symmetries Aut(G) form a permutation group under composition
e if p and ¢’ are symmetries, so is p o ¢’

@ only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)

Input: Graph G
Output: Generating set 5 C Aut(G) with (5) — Aut(G)

10/26



Tread carefully...

Treat groups

@ a graph G can have an exponential number by the book!

@ symmetries form a under compo%kgn

e if p and ¢’ are symmetries, so is p o ¢’ / L \

@ only write down small subset S which generates Pkl
Problem (Symmetry Detection)
Input: Graph G / \
Output: Generating set with

10/26



Tread carefully...

Treat groups

@ a graph G can have an exponential number by the book!

@ symmetries form a under compo%kgn

e if p and ¢’ are symmetries, so is p o ¢’ / L \

@ only write down small subset S which generates Pkl
Problem (Symmetry Detection)
Input: Graph G / \
Output: Generating set with

@ state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

10/26



Symmetry Detection: dejavu

@ I've been building the symmetry detection tool dejavu for the past 5 years

e
dejavu

&

automorphisms.org

11/26



Symmetry Detection: dejavu

@ I've been building the symmetry detection tool dejavu for the past 5 years

@ it's fast

e
dejavu

&

automorphisms.org

11/26



Symmetry Detection: dejavu

@ I've been building the symmetry detection tool dejavu for the past 5 years
@ it's fast

@ it's fastest on SAT graphs

e
dejavu

&

automorphisms.org

11/26



Symmetry Detection: dejavu

@ I've been building the symmetry detec | cheat using ast 5 years
randomness!

@ it's fastest on SAT graphs \
(] haS One—Sided bOU nded €I'rOr (does not matter for most applications) /\

dejavu

&

@ it's fast

automorphisms.org

11/26



Symmetry Detection: dejavu

@ I've been building the symmetry detec | cheat using ast 5 years
randomness!

@ it's fastest on SAT graphs \
(] haS One—Sided bOU nded €I'rOr (does not matter for most applications) /\

e randomness is inherent to the design d javu

&

@ it's fast

automorphisms.org

11/26



Symmetry Breaking: Refined Picture

F
—
Step 1: model F as graph G
detection J/

run dejavu on G

\
A\l

Step 2: compute and add symmetry breaking constraints

exploitation
SAT solver

12/26



Symmetry Breaking: Refined Picture |l
F

—
Step 1: model F as graph G
detection J/

run dejavu on G

Step 2:
analysis ’ row |nterchangeab|llty p0|ntW|se stablllzers orbits dISJrOInt decomposition ‘
Step 3: add symmetry breaking constraints

exploitation
SAT solver

13/26



Symmetry Breaking Sub-Tasks

row interchangeability ‘ ’ pointwise stabilizers

’ orbits ‘ disjoint decomposition

@ structural analysis of permutation group

14/26



Symmetry Breaking Sub-Tasks

disjoint decomposition

row interchangeability ‘ ’ pointwise stabilizers

[orve |

@ structural analysis of permutation group

@ enable efficient production of symmetry breaking clauses

14/26



Symmetry Breaking Sub-Tasks

row interchangeability ‘ ’ pointwise stabilizers

’ orbits ‘ disjoint decomposition

@ structural analysis of permutation group
@ enable efficient production of symmetry breaking clauses
@ implementation issues in sate-of-the-art symmetry breaking (BreaklD, SCIP, ...)

14 /26



Symmetry Breaking Sub-Tasks

row interchangeability ‘ ’ pointwise stabilizers

’ orbits ‘ disjoint decomposition

@ structural analysis of permutation group

@ enable efficient production of symmetry breaking clauses

@ implementation issues in sate-of-the-art symmetry breaking (BreaklD, SCIP, ...)
» expensive, make up majority of runtime in some instances

14 /26



Symmetry Breaking Sub-Tasks

row interchangeability ‘ ’ pointwise stabilizers

’ orbits ‘ disjoint decomposition

@ structural analysis of permutation group
@ enable efficient production of symmetry breaking clauses
@ implementation issues in sate-of-the-art symmetry breaking (BreaklD, SCIP, ...)

» expensive, make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

14 /26



Symmetry Breaking Sub-Tasks

row interchangeability ‘ ’ pointwise stabilizers

’ orbits ‘ ’ disjoint decomposition

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

15/26



Symmetry Breaking Sub-Tasks

row interchangeability | | pointwise stabilizers

| orbits | | disjoint decomposition

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

g other
symmetry detection

BreaklD on PHP instances

15/26



Symmetry Breaking Sub-Tasks

disjoint decomposition

‘ orbits

row interchangeability ‘ ‘ pointwise stabilizers

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

Relies on “transpositions’:
S = {(12)> (23)? (34)}
S ={(12),(1234)}

(51) = (52)

symmetry detection

BreaklD on PHP instances

15/26



Symmetry Breaking Sub-Tasks

disjoint decomposition

‘ orbits

row interchangeability ‘ ‘ pointwise stabilizers

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

Relies on “transpositions’:
S = {(12)> (23)? (34)} v
S ={(12),(1234)}

(51) = (52)

symmetry detection

BreaklD on PHP instances

15/26



Symmetry Breaking Sub-Tasks

disjoint decomposition

‘ orbits

row interchangeability ‘ ‘ pointwise stabilizers

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

Relies on “transpositions’:
S = {(12)> (23)? (34)} v
S ={(12),(1234)} x
(51) = (52)

symmetry detection

BreaklD on PHP instances

)

15/26



Symmetry Breaking Sub-Tasks

disjoint decomposition

row interchangeability ‘ ’ pointwise stabilizers

[orve |

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

‘ What are ’

Relies on “transpositions’: transpositions?

51 ={(12),(23),34)} v /

TN AU
other <S > < >
dej

javu

BreaklD on PHP instances @

symmetry detection

15/26



Symmetry Breaking Sub-Tasks

’ orbits ‘ disjoint decomposition

row interchangeability ‘ ’ pointwise stabilizers

@ implementation issues in sate-of-the-art symmetry exploitation (BreaklD, SCIP, ...)

» expensive, sometimes make up majority of runtime in some instances
» not generic, rely on very specific properties of generators

row interchangeability

What are
transpositions?

Relies on “transpositions’: ‘

S ={(12),(23),(34)} v
Ve @ /

N S, = {(12), (1234)} X
. (S1) = (S2)

symmetry detection

BreaklD on PHP instances

15/26



How could we solve them, exactly?

row interchangeability

disjoint decomposition

‘ pointwise stabilizers

16 /26



How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers

disjoint decomposition

no algorithm

16 /26



How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers

disjoint decomposition

no algorithm

([ Oh I know this! |

\4'\\

/ wﬂ“fﬁ‘ﬁ‘:‘f 16 /26

R




How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers

disjoint decomposition

no algorithm Schreier-Sims

([ Oh I know this! |

\4'\\

/ wﬂ“fﬁ‘ﬁ‘:‘f 16 /26

R




How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers disjoint decomposition
no algorithm Schreier-Sims well-known algorithm

([ Oh I know this! |

\4'\\

/ wﬂ“fﬁ‘ﬁ‘:‘f 16 /26

R




How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers disjoint decomposition
no algorithm Schreier-Sims well-known algorithm recent [Chang, Jefferson, '20]

([ Oh I know this! |

\4'\\

xS
/ @w‘;}f,‘gﬁ 16 /26




How could we solve them, exactly?

row interchangeability ‘

natural symmetric action

’ pointwise stabilizers

’ orbits ‘ disjoint decomposition

17/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS
KOS SERESS

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS
KOS SERESS

@ algorithms are “linear-time”, but not linear-time

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS
KOS SERESS

@ algorithms are “linear-time”, but not linear-time
» running time is measured in terms of dense permutation representations

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS
KOS SERESS

@ algorithms are “linear-time”, but not linear-time

» running time is measured in terms of dense permutation representations
» assume existence of a “strong” generating set

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS
KOS §

@ algorithms are “linear-time”, but not linear-time

» running time is measured in terms of dense permutation representations
» assume existence of a “strong” generating set
» assume production of random elements...

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS

@ algorithms are “linear-time”, but not linear-time

» running time is measured in terms of dense permutation representations
» assume existence of a “strong” generating set
» assume production of random elements...

@ doesn’'t make use of graphs or SAT formulas (obviously!)

18/26



Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS

@ algorithms are “linear-time”, but not linear-time

» running time is measured in terms of dense permutation representations
» assume existence of a “strong” generating set
» assume production of random elements...

@ doesn’'t make use of graphs or SAT formulas (obviously!)
@ So... also not quite what we want?

18/26



SAT-Symmetry Algorithms

Our computational setting:

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group
© we want to measure running time in the “encoding size" of graphs and groups

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group
© we want to measure running time in the “encoding size" of graphs and groups

Definition (Joint Graph- Pairs)
A graph G and generating S is called a joint graph-group pair, whenever (S) = Aut(G).

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group

© we want to measure running time in the “encoding size" of graphs and groups
Definition (Joint Graph- Pairs)
A graph G and generating S is called a joint graph-group pair, whenever (S) = Aut(G).

4

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time
O(|F| + |V| + |E| 4 enc(S)) instance-linear, where enc(S) := X ,cs| supp(p)|.

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group

© we want to measure running time in the “encoding size" of graphs and groups
Definition (Joint Graph- Pairs)
A graph G and generating S is called a joint graph-group pair, whenever (S) = Aut(G).

4

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time
O(|F| + |V| + |E| 4 enc(S)) instance-linear, where enc(S) := X ,cs| supp(p)|.

Are there better algorithms or heuristics in this setting?

19/26



SAT-Symmetry Algorithms
Our computational setting:

@ we have access to both a graph (SAT formula) and corresponding group

© we want to measure running time in the “encoding size" of graphs and groups
Definition (Joint Graph- Pairs)
A graph G and generating S is called a joint graph-group pair, whenever (S) = Aut(G).

4

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time
O(|F| + |V| + |E| 4 enc(S)) instance-linear, where enc(S) := X ,cs| supp(p)|.

Are there better algorithms or heuristics in this setting? Yes!

19/26



Symmetry Breaking: Refined Picture Il
—F
Step 1: model F as graph G

detection 1
run dejavu on G

~
joint graph- pair
analysis orbit = natural symmetric action ’ pointwise stabilizers orbits dirsjoint decomposition

.=

Step 3: add symmretry breaking constraints

exploitation
SAT solver

20/26



Algorithms in the Paper

’ natural symmetric action ‘ ’ pointwise stabilizers ‘ ’ orbits ‘ ’ disjoint decomposition

21/26



Algorithms in the Paper

’ natural symmetric action ‘ ’ pointwise stabilizers ‘ ’ orbits ‘ ’ disjoint decomposition

21/26



Algorithms in the Paper

natural symmetric action disjoint decomposition

’ pointwise stabilizers

[orie |

o finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)

21/26



Algorithms in the Paper

natural symmetric action

’ pointwise stabilizers

’ orbits ‘ ’ disjoint decomposition

o finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)

@ equivalent symmetric orbits in instance-linear time under “unique cycle assumption”

21/26



Algorithms in the Paper

’ orbits ‘ ’ disjoint decomposition

’ pointwise stabilizers

natural symmetric action

(v') but not instance-linear

o finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
@ equivalent symmetric orbits in instance-linear time under “unique cycle assumption”

@ algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21/26



Algorithms in the Paper

’ orbits ‘ ’ disjoint decomposition

’ pointwise stabilizers

natural symmetric action

(v') but not instance-linear ?

o finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits
available)
@ equivalent symmetric orbits in instance-linear time under “unique cycle assumption”

@ algorithm for natural symmetric action based on known computational group
theory (point out instance-linear graph-based heuristics)

21/26



Finest Disjoint Direct Decomposition: What it's about

22/26



Finest Disjoint Direct Decomposition: What it's about

22/26



Finest Disjoint Direct Decomposition: What it's about

22/26



Finest Disjoint Direct Decomposition: What it's about

S={

(x10x3) (x%2%3) (y1y2y3) (V1Y2Y3),
() (332) (y1y2) (V172)
(2122)(z122)}

x's and y's are independent of z's

22/26



Finest Disjoint Direct Decomposition: What it's about

={ {
(X1X2X ) (x2x3) (v1y2y3) (ViY2y3), (xx2x3) (x032X3) (y1y2y3) (V1y2Ys),
(xxe) (%2) (y1y2) (1172). (xxe) (a32) (y1y2) 1y2) (2122)(z122),
(2122)(2122)} (212)(2122)}
x's and y's are independent of z's Here they are not?

22/26



Finest Disjoint Direct Decomposition: Flip edges

23/26



Finest Disjoint Direct Decomposition: Flip edges

@)
@)
@)
@)
o

23/26



Finest Disjoint Direct Decomposition: Flip edges

@)
@)
@)
@)
o

0 000

23/26



Finest Disjoint Direct Decomposition: Flip edges

@)
@)
@)
@)
o

0 000

23/26



Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path

24 /26



Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path

© flip edges between colors

24 /26



Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path

© flip edges between colors

© compute connected components

24 /26



Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path

© flip edges between colors

© compute connected components

Lemma

Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.

24 /26



Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

25 /26



Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

25 /26



Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

n

={
X1X2X: 3)(X1X2X3)(}/1}/2}/3)()/1}/2}/3),
X1X2)((X1X 2) (1) ny2)(2122)(Z122),

22)(z2)}

not independent

NN

O

25 /26



Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

n

={
X1X2X: 3)(X1X2X3)(}/1}/2}/3)()/1}/2}/3),
X1X2)((X1X 2) (1) ny2)(2122)(Z122),

z2)(a2)} -

not independent

NN

O

25 /26



Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

S=A{
(X1X2X )(X1X2X3)(}/1}/2}/3)()/1}/2}/3), (X1X2X3)()/1)/2)/3)()/1)/2)/3)7
(x1)(302) n1y2) 01y2)(2122) (21 22), x1x2) (y1y2) (1Y2),
(2122)(z22) } ﬁ),

2122)}
not independent independent

25 /26



Summary

Step 1:
detection

Step 2:

model F as graph G
~1

joint graph— pair
| |

— S~

analysis orbit =

natural symmetric action (v) pointwise stablhzers ? ‘ orbits ‘ disjoint decomposition

Step 3:
exploitation

e

add symmetry breaking constramts

SAT solver

26 /26



Summary

F
Step 1: model F as graph G
detection
~
‘joint graph— pair ‘
Step 2. / \
analysis orbit = natural symmetric action (v) pointwise stablhzers ‘ ‘ orbits disjoint decomposition
Step 3: add symmetry breaking constramts

exploitation
SAT solver

@ make use of joint graph-group pairs to get fast, generic algorithms and heuristics

26 /26



Summary

model F as graph G
~1

‘joint graph— pair‘

Step 2: L///”///’ ‘\\\\5\5\“‘~\~\4

Step 1:
detection

analysis orbit = natural symmetric action (v) pointwise stablhzers ‘ ‘ orbits disjoint decomposition
Ste_P 3: add symmetry breaking constramts
exploitation
SAT solver

@ make use of joint graph-group pairs to get fast, generic algorithms and heuristics
@ work to do to put this in practice (no 1:1 replacement for heuristics!)

26 /26



Summary

model F as graph G
~1

joint graph— pair
| |

Step 2: L///”///’ ‘\\\\5\5\“‘~\~\4

Step 1:
detection

analysis orbit = natural symmetric action (v) pointwise stablhzers ‘ ‘ orbits disjoint decomposition
Ste_P 3: add symmetry breaking constramts
exploitation
SAT solver

@ make use of joint graph-group pairs to get fast, generic algorithms and heuristics
@ work to do to put this in practice (no 1:1 replacement for heuristics!)
@ want to detect more involved group structures

26 /26



	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


