Algorithms Transcending the SAT-Symmetry Interface

Markus Anders Mate Soos Pascal Schweitzer

SAT 2023

Problem (SAT)

Problem (SAT)

Input: Boolean formula F *Output:* Is there an assignment for the variables of F such that it evaluates to **true**?

• F is always in conjuctive normal form (CNF), e.g., $F = (a \lor b \lor c) \land (\overline{a} \lor c) \land (b)$

Problem (SAT)

- F is always in conjuctive normal form (CNF), e.g., $F = (a \lor b \lor c) \land (\overline{a} \lor c) \land (b)$
- a CNF F can also be written as a set of sets, i.e., $F = \{\{a, b, c\}, \{\overline{a}, c\}, \{b\}\}$

Problem (SAT)

- F is always in conjuctive normal form (CNF), e.g., $F = (a \lor b \lor c) \land (\overline{a} \lor c) \land (b)$
- a CNF F can also be written as a set of sets, i.e., $F = \{\{a, b, c\}, \{\overline{a}, c\}, \{b\}\}$
- a disjunction $C \in F$ is called a *clause*

Problem (SAT)

- F is always in conjuctive normal form (CNF), e.g., $F = (a \lor b \lor c) \land (\overline{a} \lor c) \land (b)$
- a CNF F can also be written as a set of sets, i.e., $F = \{\{a, b, c\}, \{\overline{a}, c\}, \{b\}\}$
- a disjunction $C \in F$ is called a *clause*
- an element $I \in C$ is called a *literal*

• F and F' equi-satisfiable

- F and F' equi-satisfiable
- F' often considerably easier to solve

- F and F' equi-satisfiable
- F' often considerably easier to solve
- very effective on some instance types (combinatorics, logistics, ...)

- F and F' equi-satisfiable
- F' often considerably easier to solve
- very effective on some instance types (combinatorics, logistics, ...)
- overhead is an issue

• symmetry implies x = true, y = false gives same value as x = false, y = true

- symmetry implies x = true, y = false gives same value as x = false, y = true
- falsify one of the symmetrical options with $(x \lor \overline{y})$

- symmetry implies x = true, y = false gives same value as x = false, y = true
- falsify one of the symmetrical options with $(x \lor \overline{y})$
- many competing techniques (e.g., dynamic techniques)

- symmetry implies x = true, y = false gives same value as x = false, y = true
- falsify one of the symmetrical options with $(x \lor \overline{y})$
- many competing techniques (e.g., dynamic techniques)

$\{(x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2)\}$

$\{(x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2)\}$

$$\{(x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2)\}$$

$\{(x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2)\}$

$$\{(x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2)\}$$

$$\{(x_1 \lor \overline{y_1}), (x_2 \lor \overline{y_2}), (x_3 \lor \overline{y_3}), (x_1 \lor x_2 \lor x_3 \lor z_1 \lor z_2)\}$$

• symmetries of graph are symmetries of formula (and vice versa)

• bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F

- bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F
- (and it should also induce a well-defined bijection on the variables)

- bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

- bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$F = \{ (x_1 \vee \overline{y_1}), (x_2 \vee \overline{y_2}), (x_3 \vee \overline{y_3}), (x_1 \vee x_2 \vee x_3 \vee z_1 \vee z_2) \}$$

- bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$F = \{ (x_1 \lor \overline{y_1}), (x_2 \lor \overline{y_2}), (x_3 \lor \overline{y_3}), (x_1 \lor x_2 \lor x_3 \lor z_1 \lor z_2) \}$$
$$\varphi = (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2})$$

- bijection of literals φ : Lit(F) \rightarrow Lit(F) with φ (F) = F
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$F = \{ (x_1 \lor \overline{y_1}), (x_2 \lor \overline{y_2}), (x_3 \lor \overline{y_3}), (x_1 \lor x_2 \lor x_3 \lor z_1 \lor z_2) \}$$
$$\varphi = (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2})$$

 $\begin{aligned} \varphi(F) &= \\ \{\varphi(x_1) \lor \varphi(\overline{y_1}), \varphi(x_2) \lor \varphi(\overline{y_2}), \varphi(x_3) \lor \varphi(\overline{y_3}), \varphi(x_1) \lor \varphi(x_2) \lor \varphi(x_3) \lor \varphi(z_1) \lor \varphi(z_2)\} &= \\ \{(x_2 \lor \overline{y_2}), (x_1 \lor \overline{y_1}), (x_3 \lor \overline{y_3}), (x_2 \lor x_1 \lor x_3 \lor z_1 \lor z_2)\} &= \\ \{(x_1 \lor \overline{y_1}), (x_2 \lor \overline{y_2}), (x_3 \lor \overline{y_3}), (x_1 \lor x_2 \lor x_3 \lor z_1 \lor z_2)\} &= \\ F \end{aligned}$

• bijection of vertices $\varphi: V \to V$ with $\varphi(G) = (\varphi(V), \varphi(E)) = G$

Symmetry Detection on Graphs Input: Graph G

Symmetry Detection on Graphs Input: Graph G

Output: All symmetries Aut(*G*)

Symmetry Detection on Graphs Input: Graph G

Output: All symmetries Aut(G) Aut(G) = {

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$ $(x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}),$

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$ $(x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}),$ $(z_1z_2)(\overline{z_1z_2}),$

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$ $(x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}),$ $(z_1z_2)(\overline{z_1z_2}),$ $(x_1x_3)(\overline{x_1x_3})(y_1y_3)(\overline{y_1y_3}),$

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$ $(x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}),$ $(z_1z_2)(\overline{z_1z_2}),$ $(x_1x_3)(\overline{x_1x_3})(y_1y_3)(\overline{y_1y_3}),$ $(x_2x_3)(\overline{x_2x_3})(y_2y_3)(\overline{y_2y_3}),$

Output: All symmetries Aut(G) Aut(G) = { $(x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}),$ $(x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}),$ $(z_1z_2)(\overline{z_1z_2}),$ $(x_1x_3)(\overline{x_1x_3})(y_1y_3)(\overline{y_1y_3}),$ $(x_2x_3)(\overline{x_2x_3})(y_2y_3)(\overline{y_2y_3}),$

. . .

• a graph G can have an exponential number of symmetries

- a graph G can have an exponential number of symmetries
- symmetries Aut(G) form a permutation group under composition

- a graph G can have an exponential number of symmetries
- symmetries Aut(G) form a permutation group under composition
- if φ and φ' are symmetries, so is $\varphi \circ \varphi'$

- a graph G can have an exponential number of symmetries
- symmetries Aut(G) form a permutation group under composition
- if φ and φ' are symmetries, so is $\varphi \circ \varphi'$
- only write down small subset S which generates Aut(G)

- a graph G can have an exponential number of symmetries
- symmetries Aut(G) form a permutation group under composition
- if φ and φ' are symmetries, so is $\varphi\circ\varphi'$
- only write down small subset S which generates Aut(G)

Problem (Symmetry Detection) Input: Graph G

- a graph G can have an exponential number of symmetries
- symmetries Aut(G) form a permutation group under composition
- if φ and φ' are symmetries, so is $\varphi\circ\varphi'$
- only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)

Input: Graph G Output: Generating set $S \subseteq Aut(G)$ with $\langle S \rangle = Aut(G)$

• state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

• I've been building the symmetry detection tool dejavu for the past 5 years

- I've been building the symmetry detection tool dejavu for the past 5 years
- it's fast

- I've been building the symmetry detection tool dejavu for the past 5 years
- it's fast
- it's fastest on SAT graphs

I cheat using • I've been building the symmetry detect past 5 years randomness! • it's fast • it's fastest on SAT graphs • has one-sided bounded error (does not matter for most applications) déiavu

automorphisms.org

- I've been building the symmetry detect
- it's fast
- it's fastest on SAT graphs
- has one-sided bounded error (does not matter for most applications)
- randomness is *inherent* to the design

Symmetry Breaking: Refined Picture

Symmetry Breaking: Refined Picture II

row interchangeability

pointwise stabilizers

orbits

disjoint decomposition

• structural analysis of permutation group

row interchangeability

pointwise stabilizers

orbits

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses

row interchangeability

pointwise stabilizers

orbits

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

row interchangeability

pointwise stabilizers

orbits

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)
 - expensive, make up majority of runtime in some instances

row interchangeability

pointwise stabilizers

orbits

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)
 - expensive, make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

pointwise stabilizers

orbits

disjoint decomposition

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

row interchangeability

pointwise stabilizers

orbits

Relies on "transpositions":

 $S_1 = \{(12), (23), (34)\}$

disjoint decomposition

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

row interchangeability

 $egin{aligned} S_2 &= \{ (12), (1234) \} \ \langle S_1
angle &= \langle S_2
angle \end{aligned}$

BreakID on PHP instances

pointwise stabilizers

orbits

disjoint decomposition

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

row interchangeability

Relies on "transpositions": $S_1 = \{(12), (23), (34)\}$ $S_2 = \{(12), (1234)\}$ $\langle S_1 \rangle = \langle S_2 \rangle$

symmetry detection

BreakID on PHP instances

pointwise stabilizers

orbits

disjoint decomposition

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

row interchangeability

Relies on "transpositions": $S_1 = \{(12), (23), (34)\}$ $S_2 = \{(12), (1234)\}$ $\langle S_1 \rangle = \langle S_2 \rangle$

symmetry detection

BreakID on PHP instances

pointwise stabilizers

orbits

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

pointwise stabilizers

orbits

disjoint decomposition

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
 - expensive, sometimes make up majority of runtime in some instances
 - not generic, rely on very specific properties of generators

15 / 26

How could we solve them, exactly?

row interchangeability

pointwise stabilizers

orbits

How could we solve them, exactly?

row interchangeability

pointwise stabilizers

orbits

disjoint decomposition

no algorithm

How could we solve them, exactly?

row interchangeability

pointwise stabilizers

orbits

disjoint decomposition

no algorithm

row interchangeability

pointwise stabilizers

orbits

disjoint decomposition

no algorithm

Schreier-Sims

row interchangeability	pointwise stabilizers	orbits	disjoint decomposition
no algorithm	Schreier-Sims	well-known algorithm	recent [Chang, Jefferson, '20]

• algorithms are "linear-time", but not linear-time

- algorithms are "linear-time", but not linear-time
 - running time is measured in terms of dense permutation representations

- algorithms are "linear-time", but not linear-time
 - running time is measured in terms of dense permutation representations
 - assume existence of a "strong" generating set

- algorithms are "linear-time", but not linear-time
 - running time is measured in terms of dense permutation representations
 - assume existence of a "strong" generating set
 - assume production of random elements...

- algorithms are "linear-time", but not linear-time
 - running time is measured in terms of dense permutation representations
 - assume existence of a "strong" generating set
 - assume production of random elements...
- doesn't make use of graphs or SAT formulas (obviously!)

- algorithms are "linear-time", but not linear-time
 - running time is measured in terms of dense permutation representations
 - assume existence of a "strong" generating set
 - assume production of random elements...
- doesn't make use of graphs or SAT formulas (obviously!)
- So... also not *quite* what we want?

Our computational setting:

Our computational setting:

• we have access to both a graph (SAT formula) and corresponding group

Our computational setting:

- we have access to both a graph (SAT formula) and corresponding group
- 2 we want to measure running time in the "encoding size" of graphs and groups

Our computational setting:

- we have access to both a graph (SAT formula) and corresponding group
- e we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S \rangle = Aut(G)$.

Our computational setting:

- we have access to both a graph (SAT formula) and corresponding group
- We want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S \rangle = Aut(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time $\mathcal{O}(|F| + |V| + |E| + \operatorname{enc}(S))$ instance-linear, where $\operatorname{enc}(S) := \sum_{p \in S} |\operatorname{supp}(p)|$.

Our computational setting:

- we have access to both a graph (SAT formula) and corresponding group
- e we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S \rangle = Aut(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time $\mathcal{O}(|F| + |V| + |E| + \operatorname{enc}(S))$ instance-linear, where $\operatorname{enc}(S) := \sum_{p \in S} |\operatorname{supp}(p)|$.

Are there better algorithms or heuristics in this setting?

Our computational setting:

- we have access to both a graph (SAT formula) and corresponding group
- e we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S \rangle = Aut(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph G = (V, E), we call algorithms that run in time $\mathcal{O}(|F| + |V| + |E| + \operatorname{enc}(S))$ instance-linear, where $\operatorname{enc}(S) := \sum_{p \in S} |\operatorname{supp}(p)|$.

Are there better algorithms or heuristics in this setting? Yes!

Symmetry Breaking: Refined Picture III

orbit \equiv

natural symmetric action

pointwise stabilizers

orbits

disjoint decomposition

• finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"
- algorithm for natural symmetric action based on known computational group theory (point out instance-linear graph-based heuristics)

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"
- algorithm for natural symmetric action based on known computational group theory (point out instance-linear graph-based heuristics)

 $\langle S \rangle = \operatorname{Aut}(G)$

 $\langle S \rangle = \operatorname{Aut}(G)$

 $S = \{ (x_1 x_2 x_3)(\overline{x_1 x_2 x_3})(y_1 y_2 y_3)(\overline{y_1 y_2 y_3}), (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2}), (z_1 z_2)(\overline{z_1 z_2}) \}$

 $\langle S \rangle = \operatorname{Aut}(G)$

 $S = \{ (x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}), (x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2}), (z_1z_2)(\overline{z_1z_2}) \} \\ x's and y's are independent of z's$

 $S = \{ (x_1 x_2 x_3)(\overline{x_1 x_2 x_3})(y_1 y_2 y_3)(\overline{y_1 y_2 y_3}), (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2}), (z_1 z_2)(\overline{z_1 z_2}) \}$ x's and y's are independent of z's $S = \{ (x_1x_2x_3)(\overline{x_1x_2x_3})(y_1y_2y_3)(\overline{y_1y_2y_3}), (x_1x_2)(\overline{x_1x_2})(y_1y_2)(\overline{y_1y_2})(z_1z_2)(\overline{z_1z_2}), (z_1z_2)(\overline{z_1z_2})\} \\ (z_1z_2)(\overline{z_1z_2}) \} \\ Here they are not?$

Finest Disjoint Direct Decomposition: Algorithm

• color vertices with "orbits", connect vertices of orbit with a path

Finest Disjoint Direct Decomposition: Algorithm

• color vertices with "orbits", connect vertices of orbit with a path

Ilip edges between colors

24 / 26

- Finest Disjoint Direct Decomposition: Algorithm
 - Color vertices with "orbits", connect vertices of orbit with a path

elip edges between colors

3 compute connected components

• color vertices with "orbits", connect vertices of orbit with a path

Lemma

Vertices are in the same connected component if and only if they are in the same factor of the finest direct disjoint decomposition.

• we can split generators according to connected components

• we can split generators according to connected components

• we can split generators according to connected components

 $S = \{ (x_1 x_2 x_3)(\overline{x_1 x_2 x_3})(y_1 y_2 y_3)(\overline{y_1 y_2 y_3}), (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2})(z_1 z_2)(\overline{z_1 z_2}), (z_1 z_2)(\overline{z_1 z_2}) \}$

not independent

• we can split generators according to connected components

$$S = \{ (x_1 x_2 x_3)(\overline{x_1 x_2 x_3})(y_1 y_2 y_3)(\overline{y_1 y_2 y_3}), (x_1 x_2)(\overline{x_1 x_2})(y_1 y_2)(\overline{y_1 y_2})(z_1 z_2)(\overline{z_1 z_2}), (z_1 z_2)(\overline{z_1 z_2}) \} \rightarrow$$

not independent

• we can split generators according to connected components

• make use of joint graph-group pairs to get fast, generic algorithms and heuristics

make use of joint graph-group pairs to get fast, generic algorithms and heuristics
work to do to put this in practice (no 1:1 replacement for heuristics!)

- make use of joint graph-group pairs to get fast, generic algorithms and heuristics
- work to do to put this in practice (no 1:1 replacement for heuristics!)
- want to detect more involved group structures