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@ a disjunction C € F is called a clause

@ an element / € C is called a literal
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Symmetry Breaking

~

detect symmetries

~ |

compute and add symmetry breaking constraints

F/

e F and F’ equi-satisfiable
@ F' often considerably easier to solve
@ very effective on some instance types (combinatorics, logistics, ...)

@ overhead is an issue
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Symmetry Breaking: Example
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@ symmetries of graph are symmetries of formula (and vice versa)

6/26



By the way... what are symmetries again? (CNF)
@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}

7/26



By the way... what are symmetries again? (CNF)

@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}
p = (1) (x2) (y1y2) (V1)2)

7/26



By the way... what are symmetries again? (CNF)
@ bijection of literals ¢ : Lit(F) — Lit(F) with ¢(F) = F
@ (and it should also induce a well-defined bijection on the variables)

Back to our example...

F={(xaVvn),xVyR),xsVyB),(xaVxVxVzVzn)}
p = (1) (x2) (y1y2) (V1)2)

p(F) =

{o(xa) Vo), p(x2) V 0(12), p(x3) V ©(¥3), p(x1) V @(x2) V 0(x3) V p(z1) V p(22) } =
{GeVy),(aVvn),(eVy),eViVeVzaVza)=

{(Xl V ﬁ), (X2 V }72), (X3 V %), (Xl V X2 V X3 Vv 4l V 22)} =

F
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By the way... what are symmetries again? (Graphs)

@ bijection of vertices ¢ : V — V with ¢(G) = (¢(V),¢(E)) =G
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Tread carefully...

@ a graph G can have an exponential number of symmetries
@ symmetries Aut(G) form a permutation group under composition
e if p and ¢’ are symmetries, so is p o ¢’

@ only write down small subset S which generates Aut(G)

Problem (Symmetry Detection)

Input: Graph G
Output: Generating set 5 C Aut(G) with (5) — Aut(G)
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Tread carefully...
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@ a graph G can have an exponential number by the book!
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Tread carefully...

Treat groups

@ a graph G can have an exponential number by the book!

@ symmetries form a under compo%kgn

e if p and ¢’ are symmetries, so is p o ¢’ / L \

@ only write down small subset S which generates Pkl
Problem (Symmetry Detection)
Input: Graph G / \
Output: Generating set with

@ state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu
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Symmetry Detection: dejavu

@ I've been building the symmetry detection tool dejavu for the past 5 years
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Symmetry Detection: dejavu

@ I've been building the symmetry detec | cheat using ast 5 years
randomness!

@ it's fastest on SAT graphs \
(] haS One—Sided bOU nded €I'rOr (does not matter for most applications) /\

e randomness is inherent to the design d javu

&

@ it's fast

automorphisms.org
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How could we solve them, exactly?

row interchangeability ‘ ’ pointwise stabilizers disjoint decomposition
no algorithm Schreier-Sims well-known algorithm recent [Chang, Jefferson, '20]

([ Oh I know this! |
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How could we solve them, exactly?

row interchangeability ‘

natural symmetric action

’ pointwise stabilizers

’ orbits ‘ disjoint decomposition
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Permutation Group Algorithms: Observations

PERMUTATION GROUP
ALGORITHMS

@ algorithms are “linear-time”, but not linear-time

» running time is measured in terms of dense permutation representations
» assume existence of a “strong” generating set
» assume production of random elements...

@ doesn’'t make use of graphs or SAT formulas (obviously!)
@ So... also not quite what we want?
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Symmetry Breaking: Refined Picture Il
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Step 1: model F as graph G

detection 1
run dejavu on G

~
joint graph- pair
analysis orbit = natural symmetric action ’ pointwise stabilizers orbits dirsjoint decomposition

.=

Step 3: add symmretry breaking constraints

exploitation
SAT solver
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Finest Disjoint Direct Decomposition: What it's about

S={

(x10x3) (x%2%3) (y1y2y3) (V1Y2Y3),
() (332) (y1y2) (V172)
(2122)(z122)}

x's and y's are independent of z's
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Finest Disjoint Direct Decomposition: What it's about

={ {
(X1X2X ) (x2x3) (v1y2y3) (ViY2y3), (xx2x3) (x032X3) (y1y2y3) (V1y2Ys),
(xxe) (%2) (y1y2) (1172). (xxe) (a32) (y1y2) 1y2) (2122)(z122),
(2122)(2122)} (212)(2122)}
x's and y's are independent of z's Here they are not?
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Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path
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Finest Disjoint Direct Decomposition: Algorithm

@ color vertices with “orbits”, connect vertices of orbit with a path

© flip edges between colors

© compute connected components

Lemma

Vertices are in the same connected component if and only if they are in the same factor
of the finest direct disjoint decomposition.
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Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components
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Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

n

={
X1X2X: 3)(X1X2X3)(}/1}/2}/3)()/1}/2}/3),
X1X2)((X1X 2) (1) ny2)(2122)(Z122),

22)(z2)}

not independent

NN

O
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@ we can split generators according to connected components

n

={
X1X2X: 3)(X1X2X3)(}/1}/2}/3)()/1}/2}/3),
X1X2)((X1X 2) (1) ny2)(2122)(Z122),

z2)(a2)} -

not independent
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O
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Finest Disjoint Direct Decomposition: Algorithm

@ we can split generators according to connected components

S=A{
(X1X2X )(X1X2X3)(}/1}/2}/3)()/1}/2}/3), (X1X2X3)()/1)/2)/3)()/1)/2)/3)7
(x1)(302) n1y2) 01y2)(2122) (21 22), x1x2) (y1y2) (1Y2),
(2122)(z22) } ﬁ),

2122)}
not independent independent
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Summary

Step 1:
detection

Step 2:

model F as graph G
~1

joint graph— pair
| |

— S~

analysis orbit =

natural symmetric action (v) pointwise stablhzers ? ‘ orbits ‘ disjoint decomposition

Step 3:
exploitation

e

add symmetry breaking constramts

SAT solver
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Summary

model F as graph G
~1

joint graph— pair
| |

Step 2: L///”///’ ‘\\\\5\5\“‘~\~\4

Step 1:
detection

analysis orbit = natural symmetric action (v) pointwise stablhzers ‘ ‘ orbits disjoint decomposition
Ste_P 3: add symmetry breaking constramts
exploitation
SAT solver

@ make use of joint graph-group pairs to get fast, generic algorithms and heuristics
@ work to do to put this in practice (no 1:1 replacement for heuristics!)
@ want to detect more involved group structures
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