Algorithms Transcending the SAT-Symmetry Interface

Markus Anders Mate Soos Pascal Schweitzer

SAT 2023

Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

- F is always in conjuctive normal form (CNF), e.g., $F=(a \vee b \vee c) \wedge(\bar{a} \vee c) \wedge(b)$

Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

- F is always in conjuctive normal form (CNF), e.g., $F=(a \vee b \vee c) \wedge(\bar{a} \vee c) \wedge(b)$
- a CNF F can also be written as a set of sets, i.e., $F=\{\{a, b, c\},\{\bar{a}, c\},\{b\}\}$

Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

- F is always in conjuctive normal form (CNF), e.g., $F=(a \vee b \vee c) \wedge(\bar{a} \vee c) \wedge(b)$
- a CNF F can also be written as a set of sets, i.e., $F=\{\{a, b, c\},\{\bar{a}, c\},\{b\}\}$
- a disjunction $C \in F$ is called a clause

Boolean Satisfiability

Problem (SAT)

Input: Boolean formula F
Output: Is there an assignment for the variables of F such that it evaluates to true?

- F is always in conjuctive normal form (CNF), e.g., $F=(a \vee b \vee c) \wedge(\bar{a} \vee c) \wedge(b)$
- a CNF F can also be written as a set of sets, i.e., $F=\{\{a, b, c\},\{\bar{a}, c\},\{b\}\}$
- a disjunction $C \in F$ is called a clause
- an element $I \in C$ is called a literal

Symmetry Breaking

Symmetry Breaking

- F and F^{\prime} equi-satisfiable

Symmetry Breaking

- F and F^{\prime} equi-satisfiable
- F^{\prime} often considerably easier to solve

Symmetry Breaking

- F and F^{\prime} equi-satisfiable
- F^{\prime} often considerably easier to solve
- very effective on some instance types (combinatorics, logistics, ...)

Symmetry Breaking

- F and F^{\prime} equi-satisfiable
- F^{\prime} often considerably easier to solve
- very effective on some instance types (combinatorics, logistics, ...)
- overhead is an issue

Symmetry Breaking: Example

Symmetry Breaking: Example

Symmetry Breaking: Example

- symmetry implies $x=$ true, $y=$ false gives same value as $x=$ false, $y=$ true

Symmetry Breaking: Example

- symmetry implies $x=$ true, $y=$ false gives same value as $x=$ false, $y=$ true
- falsify one of the symmetrical options with $(x \vee \bar{y})$

Symmetry Breaking: Example

- symmetry implies $x=$ true, $y=$ false gives same value as $x=$ false, $y=$ true
- falsify one of the symmetrical options with $(x \vee \bar{y})$
- many competing techniques (e.g., dynamic techniques)

Symmetry Breaking: Example

- symmetry implies $x=$ true, $y=$ false gives same value as $x=$ false, $y=$ true
- falsify one of the symmetrical options with $(x \vee \bar{y})$
- many competing techniques (e.g., dynamic techniques)

Symmetry Breaking

Symmetry Breaking

Symmetry Breaking

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

$$
\begin{aligned}
& {\stackrel{1}{x_{1}}}_{x_{1}}^{x_{1}} \overbrace{\left(x_{2}\right.}^{x_{2}} \overbrace{\left(x_{3}\right.}^{x_{3}}
\end{aligned}
$$

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

Symmetry Detection: Model Graph

$$
\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

- symmetries of graph are symmetries of formula (and vice versa)

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$
- (and it should also induce a well-defined bijection on the variables)

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$
F=\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}
$$

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$
\begin{gathered}
F=\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\} \\
\varphi=\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)
\end{gathered}
$$

By the way... what are symmetries again? (CNF)

- bijection of literals $\varphi: \operatorname{Lit}(F) \rightarrow \operatorname{Lit}(F)$ with $\varphi(F)=F$
- (and it should also induce a well-defined bijection on the variables)

Back to our example...

$$
\begin{gathered}
F=\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\} \\
\varphi=\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)
\end{gathered}
$$

$\varphi(F)=$
$\left\{\varphi\left(x_{1}\right) \vee \varphi\left(\overline{y_{1}}\right), \varphi\left(x_{2}\right) \vee \varphi\left(\overline{y_{2}}\right), \varphi\left(x_{3}\right) \vee \varphi\left(\overline{y_{3}}\right), \varphi\left(x_{1}\right) \vee \varphi\left(x_{2}\right) \vee \varphi\left(x_{3}\right) \vee \varphi\left(z_{1}\right) \vee \varphi\left(z_{2}\right)\right\}=$ $\left\{\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{2} \vee x_{1} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}=$ $\left\{\left(x_{1} \vee \overline{y_{1}}\right),\left(x_{2} \vee \overline{y_{2}}\right),\left(x_{3} \vee \overline{y_{3}}\right),\left(x_{1} \vee x_{2} \vee x_{3} \vee z_{1} \vee z_{2}\right)\right\}=$
F

By the way... what are symmetries again? (Graphs)

- bijection of vertices $\varphi: V \rightarrow V$ with $\varphi(G)=(\varphi(V), \varphi(E))=G$

Symmetry Detection on Graphs

Input: Graph G

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut (G)

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries $\operatorname{Aut}(G)$
$\operatorname{Aut}(G)=\{$

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut(G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{\overline{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{\overline{y_{1}} y_{2} y_{3}}\right)$,

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut(G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{\bar{x}_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{\bar{y}_{1} y_{2} y_{3}}\right)$, $\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut(G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{\bar{x}_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{\bar{y}_{1} y_{2} y_{3}}\right)$,
$\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,
$\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)$,

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut(G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{\bar{x}_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{\bar{y}_{1} y_{2} y_{3}}\right)$,
$\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,
$\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)$,
$\left(x_{1} x_{3}\right)\left(\overline{x_{1} x_{3}}\right)\left(y_{1} y_{3}\right)\left(\overline{y_{1} y_{3}}\right)$,

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut (G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right)$,
$\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,
$\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)$,
$\left(x_{1} x_{3}\right)\left(\overline{x_{1} x_{3}}\right)\left(y_{1} y_{3}\right)\left(\overline{y_{1} y_{3}}\right)$,
$\left(x_{2} x_{3}\right)\left(\overline{x_{2} x_{3}}\right)\left(y_{2} y_{3}\right)\left(\overline{y_{2} y_{3}}\right)$,

Symmetry Detection on Graphs

Input: Graph G

Output: All symmetries Aut (G)
$\operatorname{Aut}(G)=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right)$,
$\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,
$\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)$,
$\left(x_{1} x_{3}\right)\left(\overline{x_{1} x_{3}}\right)\left(y_{1} y_{3}\right)\left(\overline{y_{1} y_{3}}\right)$,
$\left(x_{2} x_{3}\right)\left(\overline{x_{2} x_{3}}\right)\left(y_{2} y_{3}\right)\left(\overline{y_{2} y_{3}}\right)$,

Tread carefully...

- a graph G can have an exponential number of symmetries

Tread carefully...

- a graph G can have an exponential number of symmetries
- symmetries $\operatorname{Aut}(G)$ form a permutation group under composition

Tread carefully...

- a graph G can have an exponential number of symmetries
- symmetries $\operatorname{Aut}(G)$ form a permutation group under composition
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$

Tread carefully...

- a graph G can have an exponential number of symmetries
- symmetries $\operatorname{Aut}(G)$ form a permutation group under composition
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$
- only write down small subset S which generates $\operatorname{Aut}(G)$

Tread carefully...

- a graph G can have an exponential number of symmetries
- symmetries $\operatorname{Aut}(G)$ form a permutation group under composition
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$
- only write down small subset S which generates $\operatorname{Aut}(G)$

Problem (Symmetry Detection)

Input: Graph G

Tread carefully...

- a graph G can have an exponential number of symmetries
- symmetries $\operatorname{Aut}(G)$ form a permutation group under composition
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$
- only write down small subset S which generates $\operatorname{Aut}(G)$

```
Problem (Symmetry Detection)
Input: Graph G
Output:Generating set S\subseteq\operatorname{Aut}(G)\mathrm{ with }\langleS\rangle=\operatorname{Aut}(G)
```


Tread carefully...

- a graph G can have an exponential number

Treat groups

- symmetries $\operatorname{Aut}(G)$ form a permutation group under composhion
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$
- only write down small subset S which generates $\operatorname{Aut}(G)$

ALGORITHMS ALGORITHMS

Problem (Symmetry Detection)
Input: Graph G
Output: Generating set $S \subseteq \operatorname{Aut}(G)$ with $\langle S\rangle=\operatorname{Aut}(G)$

Tread carefully...

- a graph G can have an exponential number

Treat groups

- symmetries $\operatorname{Aut}(G)$ form a permutation group under composkion
- if φ and φ^{\prime} are symmetries, so is $\varphi \circ \varphi^{\prime}$
- only write down small subset S which generates Aut (G)

ALGORITHMS
Problem (Symmetry Detection)
Input: Graph G
Output: Generating set $S \subseteq \operatorname{Aut}(G)$ with $\langle S\rangle=\operatorname{Aut}(G)$

- state-of-the-art tools are nauty, saucy, bliss, Traces, dejavu

Symmetry Detection: dejavu

- I've been building the symmetry detection tool dejavu for the past 5 years

Symmetry Detection: dejavu

- I've been building the symmetry detection tool dejavu for the past 5 years
- it's fast

Symmetry Detection: dejavu

- I've been building the symmetry detection tool dejavu for the past 5 years
- it's fast
- it's fastest on SAT graphs

automorphisms.org

Symmetry Detection: dejavu

- I've been building the symmetry detect $\begin{aligned} & \text { I cheat using } \\ & \text { randomness! }\end{aligned}$ past 5 years
- it's fast
- it's fastest on SAT graphs
- has one-sided bounded error (does not matter for most applications)

Symmetry Detection: dejavu

- I've been building the symmetry detect $\begin{aligned} & \text { I cheat using } \\ & \text { randomness! }\end{aligned}$ past 5 years
- it's fast
- it's fastest on SAT graphs
- has one-sided bounded error (does not matter for most applications)
- randomness is inherent to the design

Symmetry Breaking: Refined Picture

Symmetry Breaking: Refined Picture II

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- structural analysis of permutation group

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)
- expensive, make up majority of runtime in some instances

Symmetry Breaking Sub-Tasks

- structural analysis of permutation group
- enable efficient production of symmetry breaking clauses
- implementation issues in sate-of-the-art symmetry breaking (BreakID, SCIP, ...)
- expensive, make up majority of runtime in some instances
- not generic, rely on very specific properties of generators

Symmetry Breaking Sub-Tasks

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

symmetry detection
BreakID on PHP instances

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

pointwise stabilizers

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

Relies on "transpositions":

$$
\begin{aligned}
& S_{1}=\{(12),(23),(34)\} \\
& S_{2}=\{(12),(1234)\} \\
& \left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle
\end{aligned}
$$

symmetry detection
BreakID on PHP instances

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

pointwise stabilizers

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

Relies on "transpositions":

$$
\begin{aligned}
& S_{1}=\{(12),(23),(34)\} \\
& S_{2}=\{(12),(1234)\} \\
& \left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle
\end{aligned}
$$

symmetry detection
BreakID on PHP instances

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

pointwise stabilizers

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

Relies on "transpositions":

$$
\begin{aligned}
& S_{1}=\{(12),(23),(34)\} \\
& S_{2}=\{(12),(1234)\} x \\
& \left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle
\end{aligned}
$$

symmetry detection
BreakID on PHP instances

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

symmetry detection
BreakID on PHP instances

Relies on "transpositions":

$$
S_{1}=\{(12),(23),(34)\}
$$

$$
S_{2}=\{(12),(1234)\} x
$$

$$
\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle
$$

Symmetry Breaking Sub-Tasks

```
row interchangeability
```

- implementation issues in sate-of-the-art symmetry exploitation (BreakID, SCIP, ...)
- expensive, sometimes make up majority of runtime in some instances
- not generic, rely on very specific properties of generators
row interchangeability

symmetry detection
BreakID on PHP instances

Relies on "transpositions":

$$
S_{1}=\{(12),(23),(34)\}
$$

$$
S_{2}=\{(12),(1234)\} \times
$$

$$
\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle
$$

How could we solve them, exactly?

How could we solve them, exactly?

```
row interchangeability
```


pointwise stabilizers

orbits

How could we solve them, exactly?

```
row interchangeability
```


How could we solve them, exactly?

no algorithm

pointwise stabilizers

Schreier-Sims
orbits

How could we solve them, exactly?

no algorithm

pointwise stabilizers

Schreier-Sims
orbits
well-known algorithm

How could we solve them, exactly?

```
row interchangeability
    no algorithm
```


pointwise stabilizers

Schreier-Sims
orbits
well-known algorithm
disjoint decomposition
recent [Chang, Jefferson, '20]

How could we solve them, exactly?

Permutation Group Algorithms: Observations

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time
- running time is measured in terms of dense permutation representations

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time
- running time is measured in terms of dense permutation representations
- assume existence of a "strong" generating set

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time
- running time is measured in terms of dense permutation representations
- assume existence of a "strong" generating set
- assume production of random elements...

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time
- running time is measured in terms of dense permutation representations
- assume existence of a "strong" generating set
- assume production of random elements...
- doesn't make use of graphs or SAT formulas (obviously!)

Permutation Group Algorithms: Observations

- algorithms are "linear-time", but not linear-time
- running time is measured in terms of dense permutation representations
- assume existence of a "strong" generating set
- assume production of random elements...
- doesn't make use of graphs or SAT formulas (obviously!)
- So... also not quite what we want?

SAT-Symmetry Algorithms

Our computational setting:

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group
(2) we want to measure running time in the "encoding size" of graphs and groups

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group
(2) we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S\rangle=\operatorname{Aut}(G)$.

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group
(2) we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S\rangle=\operatorname{Aut}(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph $G=(V, E)$, we call algorithms that run in time $\mathcal{O}(|F|+|V|+|E|+\operatorname{enc}(S))$ instance-linear, where enc $(S):=\Sigma_{p \in S}|\operatorname{supp}(p)|$.

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group
(2) we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S\rangle=\operatorname{Aut}(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph $G=(V, E)$, we call algorithms that run in time $\mathcal{O}(|F|+|V|+|E|+\operatorname{enc}(S))$ instance-linear, where enc $(S):=\Sigma_{p \in S}|\operatorname{supp}(p)|$.

Are there better algorithms or heuristics in this setting?

SAT-Symmetry Algorithms

Our computational setting:
(1) we have access to both a graph (SAT formula) and corresponding group
(2) we want to measure running time in the "encoding size" of graphs and groups

Definition (Joint Graph-Group Pairs)

A graph G and generating S is called a joint graph-group pair, whenever $\langle S\rangle=\operatorname{Aut}(G)$.

Definition (Instance-linear Running Time)

Given a SAT formula F, graph $G=(V, E)$, we call algorithms that run in time $\mathcal{O}(|F|+|V|+|E|+\operatorname{enc}(S))$ instance-linear, where enc $(S):=\Sigma_{p \in S}|\operatorname{supp}(p)|$.

Are there better algorithms or heuristics in this setting? Yes!

Symmetry Breaking: Refined Picture III

Algorithms in the Paper

Algorithms in the Paper

Algorithms in the Paper

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)

Algorithms in the Paper

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"

Algorithms in the Paper

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"
- algorithm for natural symmetric action based on known computational group theory (point out instance-linear graph-based heuristics)

Algorithms in the Paper

- finest disjoint decomposition in instance-quasi-linear time (instance-linear if orbits available)
- equivalent symmetric orbits in instance-linear time under "unique cycle assumption"
- algorithm for natural symmetric action based on known computational group theory (point out instance-linear graph-based heuristics)

Finest Disjoint Direct Decomposition: What it's about

Finest Disjoint Direct Decomposition: What it's about

Finest Disjoint Direct Decomposition: What it's about

$$
\langle S\rangle=\operatorname{Aut}(G)
$$

$$
\begin{aligned}
& S=\{ \\
& \left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right), \\
& \left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right), \\
& \left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\}
\end{aligned}
$$

Finest Disjoint Direct Decomposition: What it's about

$$
\langle S\rangle=\operatorname{Aut}(G)
$$

```
S={
(\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{})(\overline{\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}})(\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{})(\overline{\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}}),
(\mp@subsup{x}{1}{}\mp@subsup{x}{2}{})(\overline{\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}})(\mp@subsup{y}{1}{}\mp@subsup{y}{2}{})(\overline{\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}}),
(z1 z
x's and y's are independent of z's
```


Finest Disjoint Direct Decomposition: What it's about

$$
\langle S\rangle=\operatorname{Aut}(G)
$$

$$
\begin{array}{ll}
S=\{ & S=\{ \\
\left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right), & \left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right), \\
\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right), & \left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)\left(z_{1} z_{2}\right)\left(\overline{z_{1} z}\right. \\
\left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\} & \left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\} \\
x^{\prime} s \text { and } y^{\prime} \text { s are independent of } z \text { 's } & \text { Here they are not? }
\end{array}
$$

Finest Disjoint Direct Decomposition: Flip edges

Finest Disjoint Direct Decomposition: Algorithm

(1) color vertices with "orbits", connect vertices of orbit with a path

Finest Disjoint Direct Decomposition: Algorithm

(1) color vertices with "orbits", connect vertices of orbit with a path

(2) flip edges between colors

Finest Disjoint Direct Decomposition: Algorithm

(1) color vertices with "orbits", connect vertices of orbit with a path

(2) flip edges between colors

(3) compute connected components

Finest Disjoint Direct Decomposition: Algorithm

(1) color vertices with "orbits", connect vertices of orbit with a path

(2) flip edges between colors

(3) compute connected components

Lemma

Vertices are in the same connected component if and only if they are in the same factor of the finest direct disjoint decomposition.

Finest Disjoint Direct Decomposition: Algorithm

- we can split generators according to connected components

Finest Disjoint Direct Decomposition: Algorithm

- we can split generators according to connected components

Finest Disjoint Direct Decomposition: Algorithm

- we can split generators according to connected components


```
\(S=\{\)
\(\left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right)\),
\(\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\),
\(\left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\}\)
```

not independent

Finest Disjoint Direct Decomposition: Algorithm

- we can split generators according to connected components

$$
\begin{aligned}
& S=\{ \\
& \left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right), \\
& \left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right), \\
& \left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\}
\end{aligned}
$$

not independent

Finest Disjoint Direct Decomposition: Algorithm

- we can split generators according to connected components

$$
\begin{aligned}
& S=\{ \\
& \left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right), \\
& \left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right), \\
& \left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\}
\end{aligned}
$$

not independent
$S=\{$
$\left(x_{1} x_{2} x_{3}\right)\left(\overline{x_{1} x_{2} x_{3}}\right)\left(y_{1} y_{2} y_{3}\right)\left(\overline{y_{1} y_{2} y_{3}}\right)$,
$\left(x_{1} x_{2}\right)\left(\overline{x_{1} x_{2}}\right)\left(y_{1} y_{2}\right)\left(\overline{y_{1} y_{2}}\right)$,
$\rightarrow \quad\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)$,
$\left.\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)\right\}$
independent

Summary

Step 1:
detection
tep 2:
analysis

Step 3:
exploitation

Summary

Step 1: detection

- make use of joint graph-group pairs to get fast, generic algorithms and heuristics

Summary

Step 1: detection

- make use of joint graph-group pairs to get fast, generic algorithms and heuristics
- work to do to put this in practice (no 1:1 replacement for heuristics!)

Summary

Step 1: detection

- make use of joint graph-group pairs to get fast, generic algorithms and heuristics
- work to do to put this in practice (no 1:1 replacement for heuristics!)
- want to detect more involved group structures

