SAT Preprocessing

Mate Soos

SAT Winter School’2023

IlIT Hyderabad, India

December 17, 2023

Based on slides by Armin Biere



Rewrite system for CDLC

® You can think of CNF as a language

m CDCL solver is a machine that either accepts/rejects a CNF

= But CDCL is poor:
= Cannot remove irredundant clauses. Cleans redundant ones, but not irredundant ones

= Cannot remove variables, it can only set them

= Doesn’t by default do a number of very simple rewrite rules — only does them by accident.
= We can try to re-write CNF to make it easier for CDCL to accept/reject:

= Fewer variables (variable elimination)

= Fewer constraints (subsumption)

= Stronger constraints (strengthening)



Probing

for 1it in literals:
new_decision_ level ()
enqueue (11it)
ret = propagate ()
backtrack ()
1f ret == False:
enqueue (—11it)

continue

® Enqueues each literal and propagates
® |f propagation fails, clearly that literal must be false

= Cheap, except if you have 100M variables



Stalmarck’s method — [Stal1989]

for 1it in literals:
new_decision_ level ()
enqueue (11it)
ret = propagate ()
lits_set = get_lits_set ()
backtrack ()

new_decision level ()
enqueue (—11it)

ret = propagate ()
lits_set?2 = get_lits_set ()
backtrack ()

enqueue (intreserction(lits_setl, lits_set?2))

®= Enqueues lit, propagates. Get set of literals forced
= Enqueues —lit, propagates. Get set of literals forced

m |f there is a solution, either lir or —lit is set. So whatever the intersection of their forced literals can be set.



Backbone

def backbone (F) :

for 1lit in literals:

s = sat _solver (F && 1lit)
ret = s.solve()
if ret == UNSAT:

F=F && (-11t)

return F

® Runs a full SAT solver checking if there is a solution with [it
= |f there is no solution, —lit can be added to F
= QObviously not useful if you are only trying to check for satisfiability

= Great for e.g. counting



Equivalent Literal Substitution — [Bac02, BWO03]

Let’s see these binary (2-long) clauses:

a V —b
b VvV -—c
C V' —a

m |fa=Fisset, b=F is propagated, then ¢ = F' is propagated, which propagates a = F.
m [fa=T is set,c=T is propagated, then b =T is propagated, which propagates a =T
® There is a loop here! It's a strongly connected component (SCC)

® Therefore,a=b=c

= Replace b and ¢ with a everywhere. Two fewer variables!

= When SCC, always think: Tarjan’s algorithm. Super-quick.



Subsumption

(maV —b) (maV —b)

Replace  (—aVv—-bVc) by  {(—av—bey
(maV—-bV—d) {—a—b~—d)

= Removes all clauses that clause is subset of
= One of the few techniques that is confluent

= |mpementation:
= Whatis (aV —b) a subset of?

= Uses Bloom filter, hash is literals in clause



Strengthening/Weakening

Strengthening = Self-subsuming Resolution

(aV—=bVcVd) 5 (a~—bcVd)
(aVb) Y (avb)

® Notice: (avV—-bVceVvd)®(aVb)=aVcVd, which happens to subsume (aV—-bVcVd)

Replace

= Everything that (a vV —b) can subsume can be strengthened to remove —b
= Everything that (—a Vv b) can subsume can be strengthened to remove —a

= |Implementation: what can (aV b) strengthen?

Weakening = Reverse Self-subsuming Resolution

(a~—bcVd) (aV—-bVcVd)

Replace (aVb) y (aVb)

® Do the reverse

= Yes, this will come handy, you just wait



Binary Implication Graphs — BIG
Transitive Reduction — [HJB13]

aV —b aV —b
Replace bV by bVec
aVc {av-e)

" (gV-b)©(bVc)=aVc

® |n terms of edges: a — b — ¢, SO we can reach ¢ from a. No need for edge a — ¢

Hyper-Binary Resolution — [Bie09, HJS11]

aV —b
Addto aV-c redundant binary clause aVvd
bVcVd

® Substitute a = False, propagates d
" |nterms of edges: a -+ b,a —c,and bVvcVdis (b,c) — d. So we can reach d from a
= Why is this useful? Because a\V d means that d = False propagates a = True. Stronger propagation!

® Notice: a\Vd could contribute to SCC



Time Stamping (unhiding) — [HJB11]
Clauses: (hV —g),(hV—=f),(fV—c),(fV-d),(dV—a)

Question: is 4V a implied? Answer: Yes, it can be reached via the BIG.

Question: Is there a fast (constant-time) way to decide it?

117, 28]

/\

f: 20, 27] 18, 19]

/\

(25, 26] 21, 24]

/

a: [22,23]

m Do a DFS. First number: time first visited. Second number: time last visited. Parenthesis Theorem.

® Since h|0] = 17 > a[0] = 22 and h[0] =28 > a[1] =23, it is implied.



Time Stamping cont. (unhiding/hidden literal elimination)

Clauses: (hV —g),(hV—=f),(fV—c),(fV-d),(dV—a)

h:[17, 28]
/ \
f+[20, 27] 18, 19]
/ \
(25, 26] 21, 24]
/
a:[22,23]

® Remember: i1V —a is implied. So we can strengthen: x; Vx, Vx3VhVa
= Easy! Order by 1st value, check if 2nd value is larger.
® Homework: the same timestamps can be used to remove clauses

®= Funny part: sorting clauses can be "expensive”



Vivification — [HS07, PHS08]

def vivify(cl):
remove_clause(cl), sort (cl)
implied = false, new_cl = {}, new_decision_level ()
for 1it 1n clause:
if false(lit): continue
1f true(lit): i1mplied = true, break
new_cl.insert (lit)
enqueue (-1it), propagate ()
1f not implied: attach_clause (new_cl)
backtrack ()

® Enqueues literals’ negations one-by-one and propagates them
® So at literal n we have enqueued —[{ A=l ... A=,

= |f the n-th literal has been enqueued True, the clause I; VI, V1,1V I, must be implied by the formula
= But that subsumes the original clause! — we can remove the original clause

= |f a literal is already falsified through propagation, the clause /1 Vi,...VI,_{V —l, is implied by the formula
= But that strengthens the original clause! — we can remove the literal /,



SSTD-Oracle Vivification — [Korhonen, Jarvisalo]

def sstd_oracle_vivify(cl, glit):
new_cl = cl - 1it

for 1lit in new_cl:

1f glit !'= 1lit: enqueue(—-1lit)
ret = sat_solve ()
1f ret == UNSAT: return new_ cl

else: return cl

= Enqueues all literals’ negation in the clause except the literal we query
= Constructs query: FA-li A=ly... A=y, where C =11V ...VIp Vi
m [f this formula is UNSAT, then C' =1; V...V 1, must be implied by F!

= But ¢’ subsumes C by exactly one literal, lyiir- SO we can remove [ ;; from C



SSTD-Oracle Sparsification — [Korhonen, Jarvisalo]

def sstd_oracle_vivify (F, cl):
F’'=F-cl
s = solver (F')
for 1lit 1in cl: enqueue(—-11t)
ret = s.sat_solve ()
1f ret == UNSAT: F = F-cl

return F

m Constructs F’ that doesn’t have C in it

= Enqueues all literals’ negation in the clause

m Constructs query: F' A=l{A=ly...A=l,, where C=1;Viy... VI,
m [f this query is UNSAT, then C must be implied by F

® So we can remove C from F



Resolve and Subsume — [EénBiere-SAT’05]

(~xVaVvb); (~xVaVb);
Replace (xVeVvd)y by (xVeVvd),
(avbVceVd) {av-bveNvdiy

®  Generate resolvents for all variables, remove all clauses they subsume (except themselves)

® |f the resolvent in ternary, put it into the learned clause database (Ternary Resolution — [BillionnetS92])



Bounded Variable Elimination (BVE) — [EénBiere-SAT’ 05]

(~xVa)p  (xV-aV-b)g tav—av—by (aVd)s (cVd)s3s
Replace (~xVb)y (xVd)s by  {bv—av—bis (bVd)rs
(~x V)3 (cV—aV—b)iy

= Most important preprocessor

= A |ot of the previous ones are just to make this one work better:
= Weakening: resolvent more likely to be a tautology

= Subsumption: fewer resolvents, resolvents can subsume other cls

= SSTD-Oracle Sparisifcation: see above, but stronger

= Strengthening: together with subsumption can remove clauses, which can reduce the number of resolvents
= Vivification: see above, but stronger

= SSTD-Vivification: see above, but stronger



BVE with gates — [JarvisaloBH11]
Letstryx=aAnb

—xVa); (xV-aV-b)j; 5 {fav—av—birs3

(
Replace (—xV b) y TAVERVIVERAYS

Interesting! Waaaaait a moment. And what if there are other clauses?

(—xVa); (xV-aV-b)y

ta—avy—bir (aVe)s (dV—aV—b)iy
Replace (—xVb)y (xVc) by
(—Ix\/d)i : thv—av—bizm  (bVc)as {dverss

Waaaait! Why did (d V c¢)35 get removed? Notice: (dV —aV —b) ®q4(aVc)i5)©p(bVe) = (dVec)

Let’s call:

Gp=(—xVa),(—xVb)
Gn = (x\/_'a\/_‘b)

For most gates, we can add ONLY: G, ® 0,UG, ® O, — for ITE gates, we also need G, © G,



Gate Constraints — [Tseitin’68]

EQ gate: Xy &
&

OR gate: x> (yVz) &
&

AND gate: x> (yNz) &
&

&

ITEgate: x<<(c?t:e)

(0

XORgate: L eobhdh=1 <

(x = Y)A(y—x)
(xV=y) A (—=xVy)

y—=x)AN(z—=x)A(x— (yV2))
(myVx)A(—zVx)A(-xVyVz)

(x—=>y)Ax—=2)A((yAz) = x)
(~xVY)A(—xVZ)A(=(yAz) VX)
(~xVY)A(—xVZ)A(—yV-zVx)

x—=(c=))ANx—=>(c—e) AN(~x—(c— 1) A (—x— (—c— —e))
(~xV=ceVE) A (—xVeVe) A (xV—oeV—t) A (xVeV—e)

1V VIgN

[Vl VI3A
=l Vi V-l
[1V =l V=3



