SAT Preprocessing

Mate Soos

SAT Winter School'2023

IIIT Hyderabad, India

December 17, 2023

Based on slides by Armin Biere

Rewrite system for CDLC

- You can think of CNF as a language
- CDCL solver is a machine that either accepts/rejects a CNF
- But CDCL is poor:
- Cannot remove irredundant clauses. Cleans redundant ones, but not irredundant ones
- Cannot remove variables, it can only set them
- Doesn't by default do a number of very simple rewrite rules - only does them by accident.
- We can try to re-write CNF to make it easier for CDCL to accept/reject:
- Fewer variables (variable elimination)
- Fewer constraints (subsumption)
- Stronger constraints (strengthening)

Probing

```
for lit in literals:
    new_decision_level()
    enqueue(lit)
    ret = propagate()
    backtrack()
    if ret == False:
        enqueue(-lit)
        continue
```

- Enqueues each literal and propagates
- If propagation fails, clearly that literal must be false
- Cheap, except if you have 100 M variables

Stalmarck's method - [Stal1989]

```
for lit in literals:
    new_decision_level()
    enqueue(lit)
    ret = propagate()
    lits_set = get_lits_set()
    backtrack()
    new_decision_level()
    enqueue(-lit)
    ret = propagate()
    lits_set2 = get_lits_set()
    backtrack()
    enqueue(intreserction(lits_set1, lits_set2))
```

- Enqueues lit, propagates. Get set of literals forced
- Enqueues \neg lit, propagates. Get set of literals forced
- If there is a solution, either lit or $\neg l i t$ is set. So whatever the intersection of their forced literals can be set.

Backbone

```
def backbone(F):
    for lit in literals:
        s = sat_solver(F && lit)
        ret = s.solve()
        if ret == UNSAT:
        F = F && (-lit)
    return F
```

- Runs a full SAT solver checking if there is a solution with lit
- If there is no solution, \neg lit can be added to F
- Obviously not useful if you are only trying to check for satisfiability
- Great for e.g. counting

Equivalent Literal Substitution - [Bac02, BW03]

Let's see these binary (2-long) clauses:

a	\vee	$\neg b$
b	\vee	$\neg c$
c	\vee	$\neg a$

- If $a=F$ is set, $b=F$ is propagated, then $c=F$ is propagated, which propagates $a=F$.
- If $a=T$ is set, $c=T$ is propagated, then $b=T$ is propagated, which propagates $a=T$.
- There is a loop here! It's a strongly connected component (SCC)
- Therefore, $a=b=c$
- Replace b and c with a everywhere. Two fewer variables!
- When SCC, always think: Tarjan's algorithm. Super-quick.

Subsumption

$$
\begin{array}{lll}
& (\neg a \vee \neg b) \\
\text { Replace } \quad & (\neg a \vee \neg b \vee c) \quad \text { by } \quad & (\neg a \vee \neg b) \\
& (\neg a \vee \neg b \vee) \\
& (\neg a \vee \neg) \\
& (\neg a \vee \neg b \vee \neg d)
\end{array}
$$

- Removes all clauses that clause is subset of
- One of the few techniques that is confluent
- Impementation:
- What is $(a \vee \neg b)$ a subset of?
- Uses Bloom filter, hash is literals in clause

Strengthening/Weakening

Strengthening = Self-subsuming Resolution

$$
\text { Replace } \quad \begin{aligned}
& (a \vee \neg b \vee c \vee d) \\
& (a \vee b)
\end{aligned} \text { by } \quad \begin{aligned}
& (a \vee \neg b c \vee d) \\
& (a \vee b)
\end{aligned}
$$

- Notice: $(a \vee \neg b \vee c \vee d) \odot(a \vee b)=a \vee c \vee d$, which happens to subsume $(a \vee \neg b \vee c \vee d)$
- Everything that $(a \vee \neg b)$ can subsume can be strengthened to remove $\neg b$
- Everything that $(\neg a \vee b)$ can subsume can be strengthened to remove $\neg a$
- Implementation: what can $(a \vee b)$ strengthen?

Weakening = Reverse Self-subsuming Resolution

$$
\text { Replace } \begin{aligned}
& (a \vee \neg b c \vee d) \\
& (a \vee b)
\end{aligned} \text { by } \quad \begin{aligned}
& (a \vee \neg b \vee c \vee d) \\
& (a \vee b)
\end{aligned}
$$

- Do the reverse
- Yes, this will come handy, you just wait

Binary Implication Graphs - BIG

Transitive Reduction - [HJB13]

Replace	$a \vee \neg b$		
$b \vee c$			
	$a \vee c$	by \quad	$a \vee \neg b$
:---			
$b \vee c$			
$(a \vee c)$			

- $(a \vee \neg b) \odot(b \vee c)=a \vee c$
- In terms of edges: $a \rightarrow b \rightarrow c$, so we can reach c from a. No need for edge $a \rightarrow c$

Hyper-Binary Resolution - [Bie09, HJS11]

$$
\begin{array}{ll}
& a \vee \neg b \\
\text { Add to } & a \vee \neg c \\
& b \vee c \vee d
\end{array} \quad \text { redundant binary clause } \quad a \vee d
$$

- Substitute $a=$ False, propagates d
- In terms of edges: $a \rightarrow b, a \rightarrow c$, and $b \vee c \vee d$ is $(b, c) \rightarrow d$. So we can reach d from a
- Why is this useful? Because $a \vee d$ means that $d=$ False propagates $a=T r u e$. Stronger propagation!
- Notice: $a \vee d$ could contribute to SCC

Time Stamping (unhiding) - [HJB11]

Clauses: $(h \vee \neg g),(h \vee \neg f),(f \vee \neg c),(f \vee \neg d),(d \vee \neg a)$

Question: is $\neg h \vee a$ implied? Answer: Yes, it can be reached via the BIG.
Question: Is there a fast (constant-time) way to decide it?

- Do a DFS. First number: time first visited. Second number: time last visited. Parenthesis Theorem.
- Since $h[0]=17>a[0]=22$ and $h[0]=28>a[1]=23$, it is implied.

Time Stamping cont. (unhiding/hidden literal elimination)
Clauses: $(h \vee \neg g),(h \vee \neg f),(f \vee \neg c),(f \vee \neg d),(d \vee \neg a)$

- Remember: $h \vee \neg a$ is implied. So we can strengthen: $x_{1} \vee x_{2} \vee x_{3} \vee h \vee a$
- Easy! Order by 1 st value, check if $2 n d$ value is larger.
- Homework: the same timestamps can be used to remove clauses
- Funny part: sorting clauses can be "expensive"

Vivification - [HS07, PHS08]

```
def vivify(cl):
    remove_clause(cl), sort(cl)
    implied = false, new_cl = {}, new_decision_level()
    for lit in clause:
        if false(lit): continue
        if true(lit): implied = true, break
        new_cl.insert(lit)
        enqueue(-lit), propagate()
    if not implied: attach_clause(new_cl)
    backtrack()
```

- Enqueues literals' negations one-by-one and propagates them
- So at literal n we have enqueued $\neg l_{1} \wedge \neg l_{2} \ldots \wedge \neg l_{n-1}$
- If the n-th literal has been enqueued $T r u e$, the clause $l_{1} \vee l_{2} \vee l_{n-1} \vee l_{n}$ must be implied by the formula
- But that subsumes the original clause! \rightarrow we can remove the original clause
- If a literal is already falsified through propagation, the clause $l_{1} \vee l_{2} \ldots \vee l_{n-1} \vee \neg l_{n}$ is implied by the formula
- But that strengthens the original clause! \rightarrow we can remove the literal l_{n}

SSTD-Oracle Vivification - [Korhonen, Jarvisalo]

```
def sstd_oracle_vivify(cl, qlit):
    new_cl = cl - lit
    for lit in new_cl:
        if qlit != lit: enqueue(-lit)
    ret = sat_solve()
    if ret == UNSAT: return new_cl
    else: return cl
```

- Enqueues all literals' negation in the clause except the literal we query
- Constructs query: $F \wedge \neg l_{1} \wedge \neg l_{2} \ldots \wedge \neg l_{n}$, where $C=l_{1} \vee l_{2} \ldots \vee l_{n} \vee l_{\text {qlit }}$
- If this formula is UNSAT, then $C^{\prime}=l_{1} \vee l_{2} \ldots \vee l_{n}$ must be implied by F !
- But C^{\prime} subsumes C by exactly one literal, $l_{q l i t}$. So we can remove $l_{q l i t}$ from C

SSTD-Oracle Sparsification - [Korhonen, Jarvisalo]

```
def sstd_oracle_vivify(F, cl):
    F'=F-cl
    S = Solver(F')
    for lit in cl: enqueue(-lit)
    ret = s.sat_solve()
    if ret == UNSAT: F = F-cl
    return F
```

- Constructs F^{\prime} that doesn't have C in it
- Enqueues all literals' negation in the clause
- Constructs query: $F^{\prime} \wedge \neg l_{1} \wedge \neg l_{2} \ldots \wedge \neg l_{n}$, where $C=l_{1} \vee l_{2} \ldots \vee l_{n}$
- If this query is UNSAT, then C must be implied by F
- So we can remove C from F

Resolve and Subsume - [EénBiere-SAT'05]

$$
\begin{array}{lll}
& (\neg x \vee a \vee b)_{1} \\
\text { Replace } & (x \vee c \vee d)_{2} \quad \text { by } & (\neg x \vee a \vee b)_{1} \\
& (x \vee c \vee d)_{2} \\
& (a \vee b \vee c \vee d) & (a \vee b \vee c \vee d)_{12}
\end{array}
$$

- Generate resolvents for all variables, remove all clauses they subsume (except themselves)
- If the resolvent in ternary, put it into the learned clause database (Ternary Resolution - [BillionnetS92])

Bounded Variable Elimination (BVE) - [EénBiere-SAT'05]

$$
\begin{array}{lllllll}
& (\neg x \vee a)_{1} & (x \vee \neg a \vee \neg b)_{4} \\
\text { Replace } & (\neg x \vee b)_{2} & (x \vee d)_{5} & \text { by } & (a \vee \neg a \vee \neg b)_{14} & (a \vee d)_{15} \quad(c \vee d)_{35} \\
& (\neg x \vee \neg a \vee \neg b)_{24} & (b \vee d)_{25}
\end{array}
$$

- Most important preprocessor
- A lot of the previous ones are just to make this one work better:
- Weakening: resolvent more likely to be a tautology
- Subsumption: fewer resolvents, resolvents can subsume other cls
- SSTD-Oracle Sparisifcation: see above, but stronger
- Strengthening: together with subsumption can remove clauses, which can reduce the number of resolvents
- Vivification: see above, but stronger
- SSTD-Vivification: see above, but stronger

BVE with gates - [JarvisaloBH11]

Let's try $x=a \wedge b$

$$
\left.\begin{array}{ll}
\text { Replace } \quad & (\neg x \vee a)_{1} \quad(x \vee \neg a \vee \neg b)_{3} \quad \text { by } \quad(a \vee \neg a \vee \neg b)_{13} \\
& (\neg x \vee b)_{2}
\end{array} \quad(b \vee \neg a \vee \neg b)_{23}\right)
$$

Interesting! Waaaaait a moment. And what if there are other clauses?

$$
\begin{array}{lllllll}
& (\neg x \vee a)_{1} & (x \vee \neg a \vee \neg b)_{4} \\
\text { Replace } \quad \text { by } \quad & (a \vee \neg a \vee \neg b)_{14} & (a \vee c)_{15} & (d \vee \neg a \vee \neg b)_{34} \\
& (\neg x \vee b)_{2} & (x \vee c)_{5} \\
& (\neg x \vee d)_{3} & (b \vee \neg a \vee \neg b)_{24} & (b \vee c)_{25} & (d \vee c)_{35}
\end{array}
$$

Waaaait! Why did $(d \vee c)_{35}$ get removed? Notice: $\left.(d \vee \neg a \vee \neg b) \odot_{a}(a \vee c)_{15}\right) \odot_{b}(b \vee c)=(d \vee c)$

Let's call:

$$
\begin{aligned}
G_{p} & =(\neg x \vee a),(\neg x \vee b) \\
G_{n} & =(x \vee \neg a \vee \neg b) \\
O_{p} & =(x \vee c) \\
O_{n} & =(\neg x \vee d)
\end{aligned}
$$

For most gates, we can add ONLY: $G_{p} \odot O_{n} \cup G_{n} \odot O_{p}$ — for ITE gates, we also need $G_{n} \odot G_{p}$

Gate Constraints - [Tseitin'68]

EQ gate: $\quad x \leftrightarrow y \Leftrightarrow(x \rightarrow y) \wedge(y \rightarrow x)$
$\Leftrightarrow \quad(x \vee \neg y) \wedge(\neg x \vee y)$
OR gate: $\quad x \leftrightarrow(y \vee z) \Leftrightarrow(y \rightarrow x) \wedge(z \rightarrow x) \wedge(x \rightarrow(y \vee z))$ $\Leftrightarrow \quad(\neg y \vee x) \wedge(\neg z \vee x) \wedge(\neg x \vee y \vee z)$

AND gate:

$$
\begin{aligned}
x \leftrightarrow(y \wedge z) & \Leftrightarrow(x \rightarrow y) \wedge(x \rightarrow z) \wedge((y \wedge z) \rightarrow x) \\
& \Leftrightarrow(\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg(y \wedge z) \vee x) \\
& \Leftrightarrow(\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z \vee x)
\end{aligned}
$$

ITE gate: $\quad x \leftrightarrow(c ? t: e) \Leftrightarrow(x \rightarrow(c \rightarrow t)) \wedge(x \rightarrow(\neg c \rightarrow e)) \wedge(\neg x \rightarrow(c \rightarrow \neg t)) \wedge(\neg x \rightarrow(\neg c \rightarrow \neg e))$ $\Leftrightarrow(\neg x \vee \neg c \vee t) \wedge(\neg x \vee c \vee e) \wedge(x \vee \neg c \vee \neg t) \wedge(x \vee c \vee \neg e)$

XOR gate: $\quad l_{1} \oplus l_{2} \oplus l_{3}=1 \Leftrightarrow l_{1} \vee l_{2} \vee l_{3} \wedge$
$\neg l_{1} \vee \neg l_{2} \vee l_{3} \wedge$
$\neg l_{1} \vee l_{2} \vee \neg l_{3} \wedge$
$l_{1} \vee \neg l_{2} \vee \neg l_{3} \wedge$

