
SAT Preprocessing

Mate Soos

SAT Winter School’2023

IIIT Hyderabad, India

December 17, 2023

Based on slides by Armin Biere

Rewrite system for CDLC

You can think of CNF as a language

CDCL solver is a machine that either accepts/rejects a CNF

But CDCL is poor:

Cannot remove irredundant clauses. Cleans redundant ones, but not irredundant ones

Cannot remove variables, it can only set them

Doesn’t by default do a number of very simple rewrite rules — only does them by accident.

We can try to re-write CNF to make it easier for CDCL to accept/reject:

Fewer variables (variable elimination)

Fewer constraints (subsumption)

Stronger constraints (strengthening)

Probing

for lit in literals:

new_decision_level()

enqueue(lit)

ret = propagate()

backtrack()

if ret == False:

enqueue(-lit)

continue

Enqueues each literal and propagates

If propagation fails, clearly that literal must be false

Cheap, except if you have 100M variables

Stalmarck’s method – [Stal1989]

for lit in literals:

new_decision_level()

enqueue(lit)

ret = propagate()

lits_set = get_lits_set()

backtrack()

new_decision_level()

enqueue(-lit)

ret = propagate()

lits_set2 = get_lits_set()

backtrack()

enqueue(intreserction(lits_set1, lits_set2))

Enqueues lit, propagates. Get set of literals forced

Enqueues ¬lit, propagates. Get set of literals forced

If there is a solution, either lit or ¬lit is set. So whatever the intersection of their forced literals can be set.

Backbone

def backbone(F):

for lit in literals:

s = sat_solver(F && lit)

ret = s.solve()

if ret == UNSAT:

F = F && (-lit)

return F

Runs a full SAT solver checking if there is a solution with lit

If there is no solution, ¬lit can be added to F

Obviously not useful if you are only trying to check for satisfiability

Great for e.g. counting

Equivalent Literal Substitution – [Bac02, BW03]

Let’s see these binary (2-long) clauses:

a ∨ ¬b
b ∨ ¬c
c ∨ ¬a

If a = F is set, b = F is propagated, then c = F is propagated, which propagates a = F .

If a = T is set, c = T is propagated, then b = T is propagated, which propagates a = T .

There is a loop here! It’s a strongly connected component (SCC)

Therefore, a = b = c

Replace b and c with a everywhere. Two fewer variables!

When SCC, always think: Tarjan’s algorithm. Super-quick.

Subsumption

Replace
(¬a∨¬b)
(¬a∨¬b∨ c)
(¬a∨¬b∨¬d)

by
(¬a∨¬b)
(¬a∨¬b∨ c)
(¬a∨¬b∨¬d)

Removes all clauses that clause is subset of

One of the few techniques that is confluent

Impementation:

What is (a∨¬b) a subset of?

Uses Bloom filter, hash is literals in clause

Strengthening/Weakening

Strengthening = Self-subsuming Resolution

Replace (a∨¬b∨ c∨d)
(a∨b)

by (a ∨¬b c∨d)
(a∨b)

Notice: (a∨¬b∨ c∨d)⊙ (a∨b) = a∨ c∨d, which happens to subsume (a∨¬b∨ c∨d)

Everything that (a∨¬b) can subsume can be strengthened to remove ¬b

Everything that (¬a∨b) can subsume can be strengthened to remove ¬a

Implementation: what can (a∨b) strengthen?

Weakening = Reverse Self-subsuming Resolution

Replace (a ∨¬b c∨d)
(a∨b)

by (a∨¬b∨ c∨d)
(a∨b)

Do the reverse

Yes, this will come handy, you just wait

Binary Implication Graphs – BIG

Transitive Reduction – [HJB13]

Replace
a∨¬b
b∨ c
a∨ c

by
a∨¬b
b∨ c
(a∨ c)

(a∨¬b)⊙ (b∨ c) = a∨ c

In terms of edges: a → b → c, so we can reach c from a. No need for edge a → c

Hyper-Binary Resolution – [Bie09, HJS11]

Add to
a∨¬b
a∨¬c
b∨ c∨d

redundant binary clause a∨d

Substitute a = False, propagates d

In terms of edges: a → b, a → c, and b∨ c∨d is (b,c)→ d. So we can reach d from a

Why is this useful? Because a∨d means that d = False propagates a = True. Stronger propagation!

Notice: a∨d could contribute to SCC

Time Stamping (unhiding) – [HJB11]

Clauses: (h∨¬g),(h∨¬ f),(f ∨¬c),(f ∨¬d),(d ∨¬a)

Question: is ¬h∨a implied? Answer: Yes, it can be reached via the BIG.

Question: Is there a fast (constant-time) way to decide it?

Do a DFS. First number: time first visited. Second number: time last visited. Parenthesis Theorem.

Since h[0] = 17 > a[0] = 22 and h[0] = 28 > a[1] = 23, it is implied.

Time Stamping cont. (unhiding/hidden literal elimination)

Clauses: (h∨¬g),(h∨¬ f),(f ∨¬c),(f ∨¬d),(d ∨¬a)

Remember: h∨¬a is implied. So we can strengthen: x1∨ x2∨ x3∨h∨a

Easy! Order by 1st value, check if 2nd value is larger.

Homework: the same timestamps can be used to remove clauses

Funny part: sorting clauses can be ”expensive”

Vivification – [HS07, PHS08]

def vivify(cl):

remove_clause(cl), sort(cl)

implied = false, new_cl = {}, new_decision_level()

for lit in clause:

if false(lit): continue

if true(lit): implied = true, break

new_cl.insert(lit)

enqueue(-lit), propagate()

if not implied: attach_clause(new_cl)

backtrack()

Enqueues literals’ negations one-by-one and propagates them

So at literal n we have enqueued ¬l1∧¬l2 . . .∧¬ln−1

If the n-th literal has been enqueued True, the clause l1∨ l2∨ ln−1∨ ln must be implied by the formula

But that subsumes the original clause! → we can remove the original clause

If a literal is already falsified through propagation, the clause l1∨ l2 . . .∨ ln−1∨¬ln is implied by the formula

But that strengthens the original clause! → we can remove the literal ln

SSTD-Oracle Vivification – [Korhonen, Jarvisalo]

def sstd_oracle_vivify(cl, qlit):

new_cl = cl - lit

for lit in new_cl:

if qlit != lit: enqueue(-lit)

ret = sat_solve()

if ret == UNSAT: return new_cl

else: return cl

Enqueues all literals’ negation in the clause except the literal we query

Constructs query: F ∧¬l1∧¬l2 . . .∧¬ln, where C = l1∨ l2 . . .∨ ln∨ lqlit

If this formula is UNSAT, then C′ = l1∨ l2 . . .∨ ln must be implied by F !

But C′ subsumes C by exactly one literal, lqlit. So we can remove lqlit from C

SSTD-Oracle Sparsification – [Korhonen, Jarvisalo]

def sstd_oracle_vivify(F, cl):

F’=F-cl

s = solver(F’)

for lit in cl: enqueue(-lit)

ret = s.sat_solve()

if ret == UNSAT: F = F-cl

return F

Constructs F ′ that doesn’t have C in it

Enqueues all literals’ negation in the clause

Constructs query: F ′∧¬l1∧¬l2 . . .∧¬ln, where C = l1∨ l2 . . .∨ ln

If this query is UNSAT, then C must be implied by F

So we can remove C from F

Resolve and Subsume – [EénBiere-SAT’05]

Replace
(¬x∨a∨b)1
(x∨ c∨d)2
(a∨b∨ c∨d)

by
(¬x∨a∨b)1
(x∨ c∨d)2
(a∨b∨ c∨d)12

Generate resolvents for all variables, remove all clauses they subsume (except themselves)

If the resolvent in ternary, put it into the learned clause database (Ternary Resolution – [BillionnetS92])

Bounded Variable Elimination (BVE) – [EénBiere-SAT’05]

Replace
(¬x∨a)1 (x∨¬a∨¬b)4
(¬x∨b)2 (x∨d)5
(¬x∨ c)3

by
(a∨¬a∨¬b)14 (a∨d)15 (c∨d)35
(b∨¬a∨¬b)24 (b∨d)25
(c∨¬a∨¬b)34

Most important preprocessor

A lot of the previous ones are just to make this one work better:

Weakening: resolvent more likely to be a tautology

Subsumption: fewer resolvents, resolvents can subsume other cls

SSTD-Oracle Sparisifcation: see above, but stronger

Strengthening: together with subsumption can remove clauses, which can reduce the number of resolvents

Vivification: see above, but stronger

SSTD-Vivification: see above, but stronger

BVE with gates – [JarvisaloBH11]

Let’s try x = a∧b

Replace (¬x∨a)1 (x∨¬a∨¬b)3
(¬x∨b)2

by (a∨¬a∨¬b)13
(b∨¬a∨¬b)23

Interesting! Waaaaait a moment. And what if there are other clauses?

Replace
(¬x∨a)1 (x∨¬a∨¬b)4
(¬x∨b)2 (x∨ c)5
(¬x∨d)3

by (a∨¬a∨¬b)14 (a∨ c)15 (d ∨¬a∨¬b)34
(b∨¬a∨¬b)24 (b∨ c)25 (d ∨ c)35

Waaaait! Why did (d ∨ c)35 get removed? Notice: (d ∨¬a∨¬b)⊙a (a∨ c)15)⊙b (b∨ c) = (d ∨ c)

Let’s call:
Gp = (¬x∨a),(¬x∨b)
Gn = (x∨¬a∨¬b)
Op = (x∨ c)
On = (¬x∨d)

For most gates, we can add ONLY: Gp⊙On∪Gn⊙Op — for ITE gates, we also need Gn⊙Gp

Gate Constraints — [Tseitin’68]

EQ gate: x ↔ y ⇔ (x → y)∧ (y → x)
⇔ (x∨¬y)∧ (¬x∨ y)

OR gate: x ↔ (y∨ z) ⇔ (y → x)∧ (z → x)∧ (x → (y∨ z))
⇔ (¬y∨ x)∧ (¬z∨ x)∧ (¬x∨ y∨ z)

AND gate: x ↔ (y∧ z) ⇔ (x → y)∧ (x → z)∧ ((y∧ z)→ x)
⇔ (¬x∨ y)∧ (¬x∨ z)∧ (¬(y∧ z)∨ x)
⇔ (¬x∨ y)∧ (¬x∨ z)∧ (¬y∨¬z∨ x)

ITE gate: x ↔ (c ? t : e) ⇔ (x → (c → t)) ∧ (x → (¬c → e)) ∧ (¬x → (c →¬t)) ∧ (¬x → (¬c →¬e))
⇔ (¬x∨¬c∨ t) ∧ (¬x∨ c∨ e) ∧ (x∨¬c∨¬t) ∧ (x∨ c∨¬e)

XOR gate: l1⊕ l2⊕ l3 = 1 ⇔ l1∨ l2∨ l3∧
¬l1∨¬l2∨ l3∧
¬l1∨ l2∨¬l3∧
l1∨¬l2∨¬l3∧

