Analysing the Molva and Di Pietro Private RFID Authentication Scheme

Mate Soos
INRIA team PLANETE, INRIA Rhône-Alpes

July 7, 2008
Table of Contents

1 The Molva - Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication

2 Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$

3 Design flaws
The Molva - Di Pietro scheme

1. Private identification
2. Tag authentication
3. Reader authentication

Problems with the identification

1. Key- and pair-equivalences
2. Tautologies
3. Speed
4. Finding $k_{i,j}$

Design flaws
Protocol

The protocol can be divided into three phases:

1. Private identification
2. Tag authentication
3. Reader authentication

Some specifics:

- There are n tags $T_1 \ldots T_n$ in the system
- Each tag has a unique l-bit long key k_i
- Each reader R_j has an ID ID_j
- Reader-specific key of a tag: $k_{i,j} = h(k_i || ID_j || k_i)$, where h is a hash function
- ID of a tag is its reader-specific key
Uses the function $DPM(x) = \bigoplus_{i=0}^{l/3} M(x[3i], x[3i + 1], x[3i + 2])$, where M is the majority function:
Steps of the identification:

1. R_j sends ID_j to the tag
Identification

Steps of the identification:

1. R_j sends ID_j to the tag
2. T_i computes $k_{i,j} = h(k_i || ID_j || k_i)$
Identification

Steps of the identification:

1. \(R_j \) sends \(ID_j \) to the tag
2. \(T_i \) computes \(k_{i,j} = h(k_i || ID_j || k_i) \)
3. \(T_i \) generates \(l \)-bit nonces \(r_1 \ldots r_q \):
Identification

Steps of the identification:

1. \(\mathcal{R}_j \) sends \(ID_j \) to the tag
2. \(\mathcal{T}_i \) computes \(k_{i,j} = h(k_i || ID_j || k_i) \)
3. \(\mathcal{T}_i \) generates \(l \)-bit nonces \(r_1 \ldots r_q \):
 - \(\alpha_p = r_p \oplus k_{i,j} \)
Identification

Steps of the identification:

1. R_j sends ID_j to the tag
2. T_i computes $k_{i,j} = h(k_i || ID_j || k_i)$
3. T_i generates l-bit nonces $r_1 \ldots r_q$:
 - $\alpha_p = r_p \oplus k_{i,j}$
 - $V[p] = DPM(r_p)$
Identification

Steps of the identification:

1. R_j sends ID_j to the tag
2. T_i computes $k_{i,j} = h(k_i || ID_j || k_i)$
3. T_i generates l-bit nonces $r_1 \ldots r_q$:
 - $\alpha_p = r_p \oplus k_{i,j}$
 - $V[p] = DPM(r_p)$
 - sends the $(\alpha_p, V[p])$ pairs
Identification

Steps of the identification:

1. R_j sends ID_j to the tag
2. T_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
3. T_i generates l-bit nonces $r_1 \ldots r_q$:
 - $\alpha_p = r_p \oplus k_{i,j}$
 - $V[p] = DPM(r_p)$
 - sends the $(\alpha_p, V[p])$ pairs
4. R_j computes $DPM(\alpha_p \oplus k_{i,j})$ for all keys $k_{i,j}$ it possesses and checks it against $V[p]$. This is called the **Lookup Process**

q is selected such that it is highly improbable that the Lookup Process fails.
Tag authentication is a simple challenge-response:

1. R_j sends a nonce n_j to the tag
Tag authentication is a simple challenge-response:

1. \mathcal{R}_j sends a nonce n_j to the tag
2. \mathcal{T}_i computes and sends $\omega = h(k_{i,j}||n_j||r_1||k_{i,j})$ to the reader
Tag authentication is a simple challenge-response:

1. R_j sends a nonce n_j to the tag
2. T_i computes and sends $\omega = h(k_{i,j}||n_j||r_1||k_{i,j})$ to the reader
3. R_j computes $r_1 = \alpha_1 \oplus k_{i,j}$ and checks ω against $h(k_{i,j}||n_j||r_1||k_{i,j})$
Reader authentication

Reader authentication is also a simple challenge-response:

1. \mathcal{R}_j computes $r_1 = \alpha_1 \oplus k_{i,j}$ and sends $h(k_{i,j} || r_1 || k_{i,j})$ to the tag.
Reader authentication is also a simple challenge-response:

1. \(\mathcal{R}_j \) computes \(r_1 = \alpha_1 \oplus k_{i,j} \) and sends \(h(k_{i,j}||r_1||k_{i,j}) \) to the tag.

2. \(\mathcal{T}_i \) computes \(h(k_{i,j}||r_1||k_{i,j}) \) and checks it against the received hash. If they match, the reader is authenticated.
The Molva - Di Pietro scheme

Problems with the identification

Design flaws

Outline

1. The Molva - Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication

2. Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$

3. Design flaws
If an even number of key blocks are inverted, the resulting key will be indistinguishable by the reader from the original key.
Key-equivalences

- So there are key-equivalence groups in the key space
Key-equivalences

- So there are key-equivalence groups in the key space
- Each key-equivalence group contains $2^{l/3 - 1}$ keys
Key-equivalences

- So there are key-equivalence groups in the key space
- Each key-equivalence group contains $2^{l/3-1}$ keys
- In a similar manner, there are pair-equivalences
Key-equivalences

- So there are key-equivalence groups in the key space
- Each key-equivalence group contains $2^{l/3-1}$ keys
- In a similar manner, there are pair-equivalences
- Key- and pair-equivalences cause a big headache for the Lookup Process
An $\alpha_p-V[p]$ pair essentially give (somewhat obscure) information about the key of the tag.
The Molva - Di Pietro scheme

Problems with the identification

Design flaws

Tautologies

Key-equivalences

- An $\alpha_p - V[p]$ pair essentially give (somewhat obscure) information about the key of the tag.
- Naturally, there is only so much different information that is possible to give.
Key-equivalences

- An $\alpha_p-V[p]$ pair essentially give (somewhat obscure) information about the key of the tag.
- Naturally, there is only so much different information that is possible to give.
- So, there is a chance to give the same information twice.
Key-equivalences

- An $\alpha_p-V[p]$ pair essentially give (somewhat obscure) information about the key of the tag.
- Naturally, there is only so much different information that is possible to give.
- So, there is a chance to give the same information twice.
- Tautology is a set of x pairs that give the same information as $x-1$ pairs.
An $\alpha_p-V[p]$ pair essentially give (somewhat obscure) information about the key of the tag.

Naturally, there is only so much different information that is possible to give.

So, there is a chance to give the same information twice.

Tautology is a set of x pairs that give the same information as $x - 1$ pairs.

Tautologies are also possible and they cause further problems for the Lookup Process.
Speed problems

Average time and RAM required by the Lookup Process to find one tag on a Xeon E5345@2.33GHz with all optimisations other than assembly-level coding:

<table>
<thead>
<tr>
<th>Number of tags</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s)</td>
<td>0.1</td>
<td>1.1</td>
<td>12</td>
</tr>
<tr>
<td>Memory (MB)</td>
<td>9.6</td>
<td>96</td>
<td>965</td>
</tr>
</tbody>
</table>
Finding $k_{i,j}$

- If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$.
Finding $k_{i,j}$

- If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$.
- If the Lookup Process finds the correct key, the authentication will go through, since only α_1 is authenticated.
Finding $k_{i,j}$

- If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$
- If the Lookup Process finds the correct key, the authentication will go through, since only α_1 is authenticated
- So, by inverting one bit of a block in α_2 and checking the result of the authentication, the attacker can learn something very specific about that block
Finding $k_{i,j}$

There are only two bit-combinations for which:

1. inverting the first bit does not change the majority
2. inverting the last bit changes the majority

These are: 011 and 100
Finding $k_{i,j}$

- Each MiM authentication attack gives 1 bit of block-specific information
Finding $k_{i,j}$

- Each MiM authentication attack gives 1 bit of block-specific information.
- After $2/3 \cdot l - 1$ MiM attacks the attacker breaks the key to the key-equivalence level.
Finding $k_{i,j}$

- Each MiM authentication attack gives 1 bit of block-specific information.
- After $2/3 \cdot l - 1$ MiM attacks the attacker breaks the key to the key-equivalence level.
- At this point, the tag is no longer private.
Each MiM authentication attack gives 1 bit of block-specific information.

After $\frac{2}{3} \cdot l - 1$ MiM attacks, the attacker breaks the key to the key-equivalence level.

At this point, the tag is no longer private.

The attacker needs to brute-force the remaining $\frac{1}{3} \cdot l + 1$ bits of the key using the authentication data.
Finding $k_{i,j}$

- Each MiM authentication attack gives 1 bit of block-specific information.
- After $\frac{2}{3} \cdot l - 1$ MiM attacks, the attacker breaks the key to the key-equivalence level.
- At this point, the tag is no longer private.
- The attacker needs to brute-force the remaining $\frac{1}{3} \cdot l + 1$ bits of the key using the authentication data.
- Therefore, for $l = 99$ the authentication can be broken easily.
Finding $k_{i,j}$

- Each MiM authentication attack gives 1 bit of block-specific information.
- After $2/3 \cdot l - 1$ MiM attacks, the attacker breaks the key to the key-equivalence level.
- At this point, the tag is no longer private.
- The attacker needs to brute-force the remaining $1/3 \cdot l + 1$ bits of the key using the authentication data.
- Therefore, for $l = 99$ the authentication can be broken easily.
- For larger l-s, privacy is still lost and the scheme behaves as an authentication scheme that has a key-space of $1/3rd + 1$ of available key-bits.
Outline

1. The Molva - Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication

2. Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$

3. Design flaws
Design flaws

- Identification and authentication boundaries should have been clearly defined
Design flaws

- Identification and authentication boundaries should have been clearly defined.
- Identification and authentication keys should have been generated differently.

Mate Soos INRIA team PLANETE, INRIA Rhône-Alpes
Analysing the Molva and Di Pietro Private RFID Authentication Scheme
Design flaws

- Identification and authentication boundaries should have been clearly defined.
- Identification and authentication keys should have been generated differently.
- Given that the identification was not cryptographically secured, the integrity of the data exchanged during identification should have been authenticated during authentication.
Design flaws

- Identification and authentication boundaries should have been clearly defined.
- Identification and authentication keys should have been generated differently.
- Given that the identification was not cryptographically secured, the integrity of the data exchanged during identification should have been authenticated during authentication.
- The choice of the DPM function was not clearly motivated and its design was not analysed in a separate paragraph.
Thank you for your time

Any questions?