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Abstract. Boolean satisfiability is a fundamental problem in computer
science with a wide range of applications including planning, configuration
management, design and verification of software/hardware systems. The
annual SAT competition continues to witness impressive improvements
in the performance of the winning SAT solvers largely thanks to the de-
velopment of new heuristics arising out of intensive collaborative research
in the SAT community. Modern SAT solvers achieve scalability and ro-
bustness with sophisticated heuristics that are challenging to understand
and explain. Consequently, the development of new algorithmic insights
has been primarily restricted to expert intuitions and evaluation of the
new insights have been restricted to performance measurement in terms
of the runtime of solvers or a proxy for the runtime of solvers. In this
context, one may ask: whether it is possible to develop a framework to
provide white-box access to the execution of SAT solver that can aid both
SAT solver developers and users to synthesize algorithmic heuristics for
modern SAT solvers?
The primary focus of our project is precisely such a framework, which we
call CrystalBall. More precisely, we propose to view modern conflict-driven
clause learning (CDCL) solvers as a composition of classifiers and regressors
for different tasks such as branching, clause memory management, and
restarting. The primary objective of this paper is to introduce a framework
to peek inside the SAT solvers – CrystalBall– to the AI and SAT community.
The current version of CrystalBall focuses on deriving a classifier to keep
or throw away a learned clause. In a departure from recent machine
learning based techniques, CrystalBall employs supervised learning and
uses extensive, multi-gigabyte data extracted from runs of a single SAT
solver to perform predictive analytics.

1 Introduction

Boolean satisfiability is a fundamental problem in computer science with a wide
range of applications including planning, configuration management, design and
verification of software/hardware systems. While the mention of SAT can be
traced to the early 19th century, efforts to develop practically successful SAT
solvers go back to 1960s [5]. The annual SAT competition continues to witness
impressive improvements in the performance of the winning SAT solvers largely
thanks to the development of new heuristics arising out of intensive collaborative



research in SAT community [1]. While the presence of scores of heuristics has
contributed to the robustness and scalability of the SAT solvers, it has come
at the cost of lack of explainability and understanding the behavior of SAT
solvers. Consequently, the development of new algorithmic insights has been
primarily restricted to expert intuitions and evaluation of the new insights has
been restricted to performance measurement in terms of the runtime of solvers
or a proxy for the runtime of solvers.

One of the most critical, but not well-understood heuristic in SAT solvers
is learned clause database management, even though it plays a crucial role in
the performance of CDCL SAT solvers. For effective database management, a
SAT solver needs to decide which learned clauses to keep in the memory as
this will affect both memory usage, and, more importantly, runtime - thanks
to the potentially useless clause being checked for potential propagation or
conflict. While there are several different heuristics used by different modern
SAT solvers, the poor understanding of when learned clauses are used during the
proof generation makes it hard for the SAT community to develop and improve
the heuristics further.

A promising direction in better understanding heuristics in modern SAT
solvers was pursued recently by Liang et al [13,16,15]. It focused on using machine
learning for the development of a new variable branching heuristic. Their project,
MapleSAT, achieved a significant milestone by winning two gold medals in the
2016 SAT competition and two silver medals in the 2017 SAT competition. While
the success of MapleSAT shows the potential of machine learning techniques in
SAT solving, the framework for designing heuristics is still primarily restricted to
a black box view of SAT solving by focusing on runtime or a proxy of runtime,
similarly to [12] which focuses on learning efficient heuristics for QBF formulas.
In this context, one may ask: whether it is possible to develop a framework to
provide white-box access to the execution of SAT solver, which can aid the SAT
solver developer to synthesize algorithmic heuristics for modern SAT solvers?

The purpose of our project, called CrystalBall, is to answer the above question
affirmatively. We view modern CDCL solvers as a composition of classifiers and
regressors for different tasks such as branching (which variable to branch on),
clause memory management (which learned clauses to keep in the memory and
which ones to throw ), restarts (when to terminate a branch and restart), and the
like. To gain a deeper understanding of the underlying classifiers, as a first step,
we have built a framework to provide white box access to SAT solvers during
the solving phase. We envision that such a framework to allow the end user to
gain an in-depth data-driven understanding of the performance of their heuristics
and aid them in designing better heuristics. We do not aim to replace expert
intuition but propose an expert-in-the-loop approach where the expert is aided
with statistically sound explainable classifiers by CrystalBall.

The current version of CrystalBall focuses on inferring two classifiers to predict
whether a learnt clause should be kept or thrown away. We take a supervised
learning approach that required the design of a sophisticated architecture for
data-collection from the execution trace of a SAT solver. We then use supervised
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learning to infer a set of interpretable classifiers, which are translated to C++
code3, compiled into CryptoMiniSat and executed along with the solver. It is
worth mentioning that the classifiers were inferred using only a small set of
UNSAT instances. The ability of the learned classifier to handle SAT instances
almost as well as UNSAT instances, along with being able to outperform the
state-of-the-art solver of 2017, provides strong evidence in support for the choices
of different components in our framework. CrystalBall is released as an open-source
framework and we believe CrystalBall could serve as a backbone for designing
algorithmic ideas for modern CDCL solvers via a data-driven understanding of
their heuristics.

The rest of the paper is organized as follows. We first introduce notation
and preliminaries in Section 2. We describe in detail the feature engineering,
large-scale extraction of data from SAT solvers, labeling of data and classifier in
Section 3 and present preliminary results in Section 4. We finally conclude in
Section 5 with an outlook for future work.

2 Notations and Preliminaries

We borrow the preliminaries and terminology from [8]. Let X be the set of n
Boolean variables. A literal a is either a variable x or its negation x̄. A clause
C = a1 ∨ . . . ∨ ak is a disjunction of literals. A clause of size 1 is called a unit
clause. A formula F over X is in Conjunctive Normal Form (CNF) if it is a
conjunction over clauses.

A resolution derivation of C from a formula F is a sequence of clauses
(C1, C2, . . . Cτ ) such that Cτ = C and every Ci is either a clause in F (an axiom)
or is derived from clauses Cj , Ck with j, k < i, by the propositional resolution
rule, A ∨ a � B ∨ ā → A ∨ B We refer to this resolution step � as “A ∨ a and
B ∨ ā are resolved over a”. A unit propagation is a special propositional rule
when B = ∅.

Given an input formula F , the run of a CDCL solver consists following sequence
of actions:

1. Choose a variable to branch on and assign a value (0 or 1) to the chosen
variable (if xi is assigned 0 then it is equivalent to adding x̄i to the set of
clauses).

2. Use unit propagation rules until some clause gets falsified. This is known as
conflict.

3. Derive a learned clause from the conflict, add the learned clause to the
database D of clauses, and backtrack.

4. Restart the search after some time and start branching again from the top

When we start branching, i.e., choose a variable and assign a value to it then
the literals implied by this assignment are said to belong to the first decision

3 Translation of the predictor happens by recursively walking the decision tree(s) and
emitting human-readable C++ code
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level. Subsequently if we make another decision to branch on another variable
then the new literals implied at this step are said to belong to the second decision
level. A literal can belong to at most one decision level. We define LBD (Literal
Block Distance) score of a clause to be the number of distinct decision levels to
which the literals of the clause belong at the time of creation of the clause [2].

One can view modern CDCL solver as composition of classifiers and regressors
to perform the following actions such as branching, learned clause cleaning,
and restarting. It is worth noting that much of the prior work in the SAT
community has implicitly focused on designing better classifiers for each of the
above components even though viewing the different components as classifiers
has not always been explicit [17]. The classifiers employed in state of the art SAT
solvers have significantly improved over the years in their empirical performance,
but there has been lack of rigorous analysis or theoretical understanding of
the reasons behind the performance of these models. In this work, we focus on
classifiers for learned clause cleaning, and we review two of the most prominent
classifiers, employed in MiniSat and Maple LCM Dist. It is worth noting that
MiniSat has been one of the most prolific SAT solvers, significantly faster than
any other solver at the time of its release and Maple LCM Dist won the 2017 SAT
Competition Main track.

The classifier of MiniSat. MiniSat maintains a limit on the maximum number
of clauses in the memory, which is geometrically increased every time clause
cleaning is performed. To this end, MiniSat keeps track of the activity of learned
clauses. For a clause C, its activity is incremented every time C participates in
the 1st Unique Implication Point (1st UIP) conflict [4]. During clause cleaning,
learned clauses are sorted in decreasing order by their activity and the bottom
half of the learned clauses are thrown away.

The classifier of Maple LCM Dist [14]. This 2017 SAT Competition winning
solver has a 3-tier system for keeping learned clauses: Tier 0, Tier 1, and Tier
2. Tier 0 is never cleaned, i.e., clauses in Tier 0 are never removed, while Tier
1 is cleaned every 25K conflicts and Tier 2 is cleaned every 10K conflicts. The
different tiers’ classifiers and the movement between the tiers is relatively complex,
and we refer the interested reader to the Appendix for a detailed description of
them.

2.1 Related Work

We assume that the reader is familiar with the SAT problem and for lack of
space, we refer the reader to [4] for an extensive survey of related literature.
While CrystalBall, to the best of our knowledge, is the first framework to provide
white-box access to the execution of SAT solver; our work, nonetheless, makes
use of several ideas from the extensive research pursued by the SAT community.

Xu et al. [25] proposed one of the earliest approaches to using machine learning
for SAT solving. Their approach, SATZilla, focused on predicting the best SAT
solver from a given portfolio of different solvers. SATZilla employed a supervised
machine learning training process and focused on runtime as the metric. Recently,
the SAT community has focused efforts to understand the performance of SAT
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solvers from different angles such as empirical studies focused on runtime [11,3,10],
through the lens of proof complexity [7], and the like. In a series of papers, Liang
et al. [13,16,15] have proposed usage of metrics other than runtime such as
learning rate, global learning rate and the like [17]. Similarly, NeuroSAT [22]
showcases the potential for ML in SAT, but does so using non-explainable deep
learning with single-bit supervision.

3 CrystalBall: An Overview of the Framework

We now present the primary technical contribution of our work, CrystalBall
focusing on designing the algorithmic ideas for keeping and throwing away learned
clauses. Ideally, one would want to record the entire trace of the execution of the
SAT solver for a given instance and perform classification on the collective traces
on several instances. Given the complexity of modern SAT solvers, recording the
entire trace is time and space consuming and cannot realistically scale beyond
small SAT instances [23]. Since a learned clause can be viewed as derived by
the application of propositional resolution, our insight is to employ DRAT to
reconstruct a close approximation to the significant aspects of the trace of the
SAT solver. Since we are using DRAT, our focus is limited to the execution of
SAT solver on UNSAT instances. We designed the framework of CrystalBall to
allow integration of most modern CDCL-based SAT solvers. For our work, we
have integrated CrystalBall with CryptoMiniSat, a modern competitive SAT solver
that was placed 3rd in the recently held SAT’18 competition.

CrystalBall consists of four phases: (i) feature engineering, (ii) data collection,
(iii) data labeling, and (iv) classifier creation. Feature engineering focuses on the
design of features that can be used by the classifier. Data collection focuses on the
modifications to the SAT solver required for an efficient collection of reliable data
and computation of labels corresponding to each learned clause. Labeling focuses
on labeling the learned clauses whether to keep them or throw them away, based
on total knowledge, i.e., past and future, of the learned clause Classifier creation
focuses on employing state of the art supervised machine learning techniques
to predict the label based on the past performance (i.e., data available while
solving) of the learned clause.

The objective of CrystalBall is not to replace expert intuition but to allow for
an expert in the loop paradigm where a significant amount of relevant data is
made available to the expert to allow both for validation of ideas as well as to
inspire new ones.

3.1 The Base Solver

As discussed in Section 2, the state of the art SAT solvers are comprised of multiple
interdependent components, e.g., the learned clauses kept in memory influence
clause learning, which influences the activity of variables and therefore branching
and in turn, affecting the restart and clause deletion. The interdependence of the
various components is both a challenge and an opportunity in the collection of data.
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The complexity of interactions is a challenge, as it influences the data we gather
in ways that are sometimes hard to understand. However, the interdependence
of these components is what makes a SAT solver useful in solving real-world
problems, and hence collecting this (sometimes messy) data makes the data
useful. Collecting “clean” data would make little, if any, sense as the data would
be useful neither to make inferences about what modern SAT solvers do nor to
train a system to delete learned clauses in a modern SAT solver.

Our base solver to collect data exhibits the following set of dynamic behaviors,
all of which are part of standard CryptoMiniSat, except for not explicitly deleting
learned clauses:

1. We employ standard VSIDS variable branching heuristic as introduced in
Chaff [19] as well as a learning rate based heuristic [16] along with polarity
caching [21].

2. We use a mix of geometric [6] and Luby sequence [18] based static restart
heuristics as well as a LBD score-based dynamic restart heuristic.

3. We perform inprocessing as standard for CryptoMiniSat. CryptoMiniSat does
not perform preprocessing.

4. We strive to keep all learned clauses in memory since we want to know
when every learned clause is useful in the unsatisfiability proof. Note that
inprocessing may delete learned clauses in some cases.

3.2 Feature Engineering

The accuracy of typical supervised models is often correlated with presence of
large number of features and large training data. This comes at the cost of
training time and additional complexity of training process. Since training is
an offline process and needs to be performed only once, we focus on design
of a large number of features corresponding to learned clause. Our features
can be categorized into four classes: (i) global features, (ii) contextual features,
(iii) restart features, and (iv) performance features. We describe below different
features in more detail with an intuitive rational for their inclusion.

Global features The global features of a learned clause are the property of the
CNF formula at the time of clause creation. For example distribution statistics of
horn clauses, irredundant clauses, number of variables, and the like. In particular,
we use the features employed by SATZilla in the development of portfolio solvers.
Since the underlying CNF formula undergoes substantial modifications during
the solving, our solver recomputes these features regularly (in particular, at every
100K conflicts) unlike SATZilla that focuses on features only at startup. For
every learned clause, we use the latest generated set of global features. Intuitively,
inclusion of these features allows the classifier to avoid overfitting to particular
types of CNF instances.
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Contextual features To capture the context in which a clause is learned, we
store features corresponding to the context of generation of a clause. In particular,
contextual features are computed at the time of generation of the clause and
relate to the generated clause. Contextual features include the number of literals
in the clause or its LBD score.

Restart features Restarts constitute a core component of the modern SAT
solvers and one can view every restart corresponding to a phase in the execution
of a SAT solver. Intuitively, one expects restart to capture the state of the solver
and the progress achievable from that state. We focus on features that capture the
execution of the SAT solver in the current and preceding restarts. In particular,
the restart features correspond to statistics (average and variance) on the size and
LBD score of clauses, branch depth, trail depth during the current and previous
restart.

Performance features The modern CDCL-based SAT solver maintain several
performance parameters about learned clauses, which influence cleaning of the
learned clauses. For example, as stated above, the classifiers in Maple LCM Dist
employ touched and activity for ordering of clauses in Tier 1 and Tier 2 respectively.
Activity is the clause activity as measured by MiniSat [6] and touched is the last
conflict at which the system played part in a 1st UIP conflict clause generation.
Consequently, we compute and maintain several performance features such as the
number of times the solver played part of a 1st UIP conflict clause generation,
the number of times it caused a conflict and the number of times it caused a
propagation.

Normalization Ideally we want our features to be independent of the problem
so that we can compare the values of a feature across problems. Our original
features are the property of the particular run of the SAT solver. For different
problems the absolute value of same feature can differ drastically. Therefore we
can not directly compare the feature values across different problems. Instead,
we have to rescale the feature values so that they become somewhat comparable
across different problems. In order to achieve this we relativize the feature values
by taking average feature values in the history as a guideline and measuring the
ratio of the actual feature value and this average instead. This normalization is
not perfect. However it does help in reducing the difference of scales of the the
same feature across different problems. For instance the absolute learned clause
size can vary drastically (10 vs 100) across different problems. However, the
relative learned clause size feature becomes comparable across different problems

3.3 Data Collection

The data collection consists of two passes: a forward pass and a backward pass.
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– Forward pass: The SAT solver is run on each of the benchmark formulae.
During execution, we keep track of a set fraction of randomly chosen learned
clauses, which we call marked learned clauses. For each marked learned clause
C, we track and calculate its features and characteristics and continuously
write them to a database file for later analysis. A DRAT proof is produced
while running.

– Backward pass: A modified DRAT-trim [24] is used to parse the DRAT
proof. This modified proof checker writes data into the same database file
about each and every use of all marked learned clause in the unsatisfiability
proof.

It is worth noting that while we keep track of learned clauses during the
forward pass, we do not track how they were learned, i.e., which resolution
rules were used to learn them. Tracking the resolution proof during the forward
pass has been long thought to be computationally intractable for all except toy
benchmarks. Recent works in progress have made some interesting headway;
sustained development in this area may lead to versions of CrystalBall with the
ability to keep track of proof in the forward trace. 4

Our approach of using DRAT-trim has a number of advantages and disad-
vantages. The primary disadvantage arises from the fact that we are referring
to two different proof trees during the forward and backward passes, i.e., proof
tree generated by solver (which we are not tracking) might be different from the
proof generated by DRAT-trim during the backward pass. However, this division
of responsibility between the solver and the proof checker saves significantly on
computational, and implementation efforts, and, most importantly allows the
system to be used universally with minimal modification, as all competitive SAT
solvers, and even many older ones, contain DRAT-trim support thanks to it being
mandatory to participate in modern SAT Competitions.

Tracking and Sampling

We attach an ID, CID, to each clause C so that C can be correctly and fully
tracked. We only track some randomly selected set of clauses due to size and
timing constraints. All non-tracked clauses’ CID is set to 0. We modified both
the SAT solver to output and DRAT-trim to read and store, the 64-bit clause ID
for each clause in the binary DRAT-trim format. We randomly set 96% of clauses’
CID to 0 to have sufficient data without severe adverse effect on performance,
thus being able to handle larger instances. Neither the forward nor the backward
passes then wrote any data about clauses with CID of 0.

Forward Pass Data Gathering with SQLite

Dumping gigabytes of data for later analysis is a non-trivial task because it has
to achieve simultaneously the convenience of data access, speed, and consistency

4 Private communication: J. Nordström
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of data collected across different runs. The data thus collected can significantly
affect the quality of classifiers built on top. To dump the data, we chose SQLite
because (a) it is self-contained, requiring no separate SQL server process, and
(b) the data created by SQLite is a single file that can be efficiently collated
with other files and copied from cloud and cluster systems, which is not the case
for most of the other SQL servers’ data files. Furthermore, SQLite is a mature,
well-performing database with a complex query language, subqueries, indexes
and the like.

By default, SQLite is synchronous. However, in our case, if execution fails,
DRAT-trim also fails to generate data, and the run would be unusable in any
case. The default SQLite choice of synchronicity comes at the expense of signifi-
cantly increased runtime, with no benefits in our case. Therefore we set PRAGMA
synchronous = OFF and PRAGMA journal mode = MEMORY to increase the speed
of writing data to disk substantially. Whenever possible, we also INSERT multiple
data in one transaction, using SQLite’s BEGIN/END TRANSACTION methods to
lower synchronization overhead. All data dumping is done using prepared queries,
creating precompiled queries for all data-dumping operations that later use raw
C/C++ operations to write data. Hence, query strings are interpreted only once
at the start, and the data is copied only once from the SAT solver’s memory into
SQLite library memory space, to be written to disk later.

To minimize overhead, we do not create indexes for any tables at table
creation – instead, we create all needed indexes before querying. This eliminates
the overhead of index maintenance during data collection. Indexes are also
dropped and re-created when needed during data analysis for the same reason.
Significant performance improvement can come from not having certain indexes,
or more properly, having the right indexes only.

These usage details turn SQLite into a structured, fast, raw data-dumping
solution that can later be used as a full-fledged SQL query system. This was key
to a viable solution.

Backward Pass Data Gathering with DRAT-trim

Given a propositional formula ϕ and a clausal proof, DRAT-trim validates that
the proof is a certificate of unsatisfiability of the formula ϕ. To this end, DRAT-
trim first forward-searches the CNF, and the SAT-solver generated a proof file
for the empty clause. Once it finds the empty clause, it runs through the proof
file in a reverse fashion, recursively marking all clauses that contributed to the
empty clause. To use DRAT-trim, we modified both the solver and DRAT-trim to
write and, respectively, read, the conflict number ConflNo at which each clause is
generated. DRAT-trim then knows for each learned clause what conflict number
it is generated at. When verifying the proof, DRAT-trim uses this information to
infer what conflict numbers each clause is used at. During DRAT-trim’s backward
pass, for all clauses CID > 0, the data pair of CID,ConflNo is dumped into a
database drat− data.

Recall, DRAT-trim does not have the information about the participation of
the clauses in conflict generation during the forward pass of the solver. DRAT-
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trim can only infer that given the clauses in the database, the conflict could have
taken place. It is possible that there are two sets of clauses, A and B, A 6= B,
both (potentially overlapping) sets are in the clause database of the solver and
given either set, the conflict could have taken place. DRAT-trim employs a greedy
algorithm to pick one of the two sets.

In general, it is possible to construct examples where an exponential number
of clause sets could have caused a conflict and finding a minimum set may be
neither trivial nor necessarily useful in building a classifier. It is, however, an
exciting avenue of research to optimize the proof by making DRAT-trim take
the smallest set at every point, for a particular post-processing overhead. This
could allow training a classifier that could optimize for proof size. Exploring such
extensions is beyond the scope of this work, and we leave it to future work.

3.4 Data Labeling

To infer a classifier via supervised learning, the inference engine requires the data
corresponding to each clause be labeled a clause to be kept or thrown away. A
naive strategy would be to label a clause useful if the clauses is used at all in
the UNSAT proof generated by DRAT-trim. Analysis of data gathered from the
backward pass indicates that proofs generated by CryptoMiniSat use close to 50%
of the kept learned clauses while simultaneously throwing away approximately
99% of its learned clauses. This apparent contradiction is due to two factors: (1)
as evidenced from the data gathered, most clauses are used in a hot spot close to
where they are learned and not (or rarely) used later (2) SAT solver developers
understand that there is a cost that is paid (both in memory usage and, more
importantly, CPU clock cycles) for keeping a clause. Hence, if a clause is mostly
useful in the near future, but may have, say, a single use far in the future, it may
be beneficial to throw it away after a short amount of time, having served most
of its purpose, and hoping that the solver will find a way to the proof anyway.

Given this analysis, it is clear that there are two corresponding guiding factors
that govern whether we should label a clause to be kept: (1) whether the clause
is useful at all later and (2) whether the distribution of future uses merits the
solver to keep the clause, i.e. whether the cost should be paid to keep the clause
until the future point(s) when it’s useful. Satisfying requirement (1) is trivial
when labeling a data point for keep/throw, given that we know when a clause will
be useful and hence we know its last-use point. However, there are no existing
cost models to satisfy (2). While a detailed study of construction of cost models
is beyond the scope of this work and deferred to future work, we define the
usefulness of a clause and the desired classifiers as follows:

1. A clause c is labeled to be kept for an interval of t conflicts if the number of
times it was used in the final unsatisfiability proof (as computed by DRAT-
trim) is greater than the average of the number of times all the clauses in
databases are useful over the interval.

2. We employ two labelings (and associated classifiers) to handle the short-term
and long-term usefulness of a clauses. The classifier keep-short (resp. keep-
long) is short-sighted (resp. long-sighted) and attempts to predict whether the
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clause is to be kept for the next 10K (resp. 100K) conflicts and is trained by
using the data labeled by setting t = 10, 000 (resp. t = 100, 000) as explained
above.

3.5 Inference of a Classifier via Supervised Learning

Given the labeled data, we considered several choices for our classifier including
SVM, decision trees, random forests, and logistic regression. The desired learning
algorithm was chosen based on the following primary constraints: (1) Our 218
features, comprised of four different categories, are mixed and heterogeneous, (2)
there is no straightforward way to normalize all of our features, (3) the model
must be easily convertible to C++ code as the decision inside the SAT solver
has to very fast, and (4) the model must provide meaningfully good prediction
accuracy.

Although we have created good classifiers using both SVM and logistic
regression, we found that satisfying requirement (3) is relatively complicated
for these and tuning them in our chosen framework, scikit-learn [20], is harder
than decision trees and random forests. Decision trees satisfy all requirements
and allow for easy visualization but give relatively worse prediction accuracy
than random forests. We therefore chose random forests as the classifier for our
classifier when running in the solver, and decisions trees when visualizing and
debugging the decision logic during training.

For demonstration purposes, both a keep-short and a keep-long trained decision
tree is visualized in the Appendix. As expected, the actual random forests used
are too big to be visualized, containing approx. 320 decision nodes for each
classifier’s tree, where 10 trees make up a decision forest. The prediction accuracy
of the decision trees visualized are only slightly lower than the final decision
forests, and reviewing them can lead to interesting insights.

3.6 Feature Ranking

As discussed in Section 2, state of the art solvers over the past decade have
relied on finding and exploiting strong features to estimate learned clause quality.
These relatively few features form the core of their heuristic for learned clauses
database management. The identification of these heuristics has largely been
driven by expert intuition and on runtime measurements.

In contrast, CrystalBall employs a data-driven heuristic along with an expert-
driven cost model, for identifying the distinguishing features, which we can chose
to be a relatively large set, given that the classifier will be inferred automatically
and complicated relationships between them will be handled by the classifier. We
use feature importance method of the Random Forest to rank the features by
their importance. A Random Forest consists of several decision trees. The root
of a decision tree corresponds to the most important decision in the decision tree
as the root affects the classification for a large fraction of inputs. Furthermore,
the decision nodes closer to the root are more important while the ones farther
away from the root are less important. Quantitatively CART 4.5 uses the average
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decrease in Gini impurity as the measure of feature importance. Gini impurity
is a measure of how often a randomly chosen element from the set would be
incorrectly labeled if it was randomly labeled according to the distribution of
the labels in the subset. The importance of a feature in a Random Forest is the
average importance of the features in each decision tree. The importance of a
feature in a decision tree is the decrease in Gini impurity caused by decisions
involving that feature in the decision tree [9].

4 Results

As stated in the introduction, the mission of CrystalBall is to develop a framework
to provide white-box access to the execution of SAT solver. The current version
of CrystalBall aims to understand the algorithmic ideas for keeping and throwing
away learned clauses.

To conduct experiments, we used a high-performance computer cluster, where
each node has an E5-2690 v3 CPU with 24 cores and 96GB of RAM. We used all
the 934 unique CNFs from SAT Competitions’ 2014,’16 and ’17 both to obtain
training data then to evaluate the speed of the final solver executable — however,
following standard practice, we split the data into 70% for training and 30% for
testing and also did not (and could not) use satisfiable instances for training,
which constituted about 45% of all instances. The experimental results presented
in this paper required over 250,000 CPU hours (equivalent to 28 CPU years)

Training Phase. When collecting data, we used a 12h timeout for both
the solver and DRAT-trim and generated over 37 GB of SQLite data. Since the
number of clauses learned for different problems varied widely, we sampled a
fixed set of data points from each benchmark to ensure fair representation and
discarded problems that were solved too fast to be meaningful. After sampling,
we have ≈ 429K data points for the keep-short classifier and ≈ 85K data points
for the keep-long classifier. Each data point contained the 200+ features plus the
label to keep or throw away the clause.

Testing Phase. While solving, we used a 5000s timeout and 4GB memory
limit, which is in line with general SAT Competition rules. Recall, we used two
classifiers keep-short and keep-long . If either of the two classifiers triggers, the
clause is kept. However, if the long-keep triggers, the clause will not be deleted
for the next 100K conflicts.

4.1 Accuracy of the Classifiers

As described in Section 3.4, we train two binary classifiers whether to keep or
throw away a clause at every N = 10, 000 conflict ticks. The confusion matrix
for the classifiers keep-short and keep-long for the test data are shown in Table 1.
A careful design of the objective function is mandated by the solver’s widely
different actions corresponding to the predicted label. In case one incorrectly
predicts that a clause should be thrown away at tick k and then would correctly
predict to keep it at tick k + 1, it is already thrown away and the system has
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Prediction
Throw Keep

Ground Throw 0.64 0.36
truth Keep 0.11 0.89

(a) keep-short

Prediction
Throw Keep

Ground Throw 0.63 0.37
truth Keep 0.09 0.91

(b) keep-long

Table 1: Confusion matrix for the trained classifiers

already failed. Hence, it is important to try to err on the side of caution and
sway our classifiers towards keeping clauses. Hence, we gave twice the sample
weight to predicting to keep a clause relative to throwing it away. This focuses on
minimizing the error cases where the classifier incorrectly predicts that the clause
should be thrown away, the false negative scenario. Therefore the false positive
and false negative error rates are not symmetric for our case, ≈ 0.35 vs. ≈ 0.10.
All in all, the high accuracy of cells in the confusion matrix shows the potential
of the data-driven approach for classification of whether to keep a clause or not.

4.2 Insights from Feature Ranking

Using the feature ranking method through a random forest classifier (as describe
above), we obtain the feature rankings and importance scores present in Table 2.
Note that since we train two classifiers, with two different labelings, we obtain two
rankings and two set of importance scores. In fact, the two differ in ways that are
quite interesting. The keep-short classifier identifies the well-known “last used in a
1st UIP conflict” as the most important feature. On the other hand, the keep-long
classifier identifies the total number of times a learned clause participated in a 1st
UIP conflict as the most important feature. A generally interesting observation is
that all features identified in the top 10 for both classifiers are dynamic features
i.e., the said features are not computed at clause creation such LDB (Literal
Block Distance), used by most solvers. A possible explanation would be that
features such as LBD may be most useful for a classifier that would predict to
keep the clause forever (what one could call keep-forever), instead of re-examining
the clause every N conflicts. We defer the design of such a classifier to future
work.

4.3 Solving SAT Competition CNFs

Given the insights from the feature ranking, it is crucial to perform a perfor-
mance analysis of the learned model for validity and more in-depth insight. The
straightforward method is to augment the base solver, CryptoMiniSat v5.6.8, with
the model inferred by CrystalBall. To this end, we have performed a preliminary
study by using 22 features selected using the guidance given by the top feature
list, as marked in Table 2. Implementation and testing of classifiers based on
a more extensive set of features is beyond the scope of this study and left for
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Relative
Feature impor-

tance

rdb0.used for uip creation∗ .1121
rdb0.last touched diff∗ .1052
rdb0.activity rel .0813
rdb0.sum uip1 used∗∗ .0635
rdb1.sum uip1 used∗∗ .0631
rdb1.activity rel .0521
rdb1.last touched diff∗ .0486
rdb1.act ranking top 10∗ .0457
rdb0.act ranking .0442
rdb0.act ranking top 10∗ .0416
rdb1.act ranking .0403
rdb0.sum delta confl uip1 used∗∗ .0304
rdb1.used for uip creation .0296
cl.antecedents lbd long reds var∗ .0189
rdb1.sum delta confl uip1 used .0183
cl.lbd rel∗ .0172
rdb.rel last touched diff∗ .0162
cl.lbd rel queue∗ .0138
rdb.rel used for uip creation∗ .0135
cl.lbd rel long∗ .0126

(a) Best features for keep-short

Relative
Feature impor-

tance

rdb0.sum uip1 used∗ .1304
rdb1.sum uip1 used∗ .0983
rdb0.used for uip creation∗ .0774
rdb0.act ranking .0740
rdb0.act ranking top 10∗ .0511
rdb0.last touched diff∗ .0489
rdb1.act ranking .0481
rdb0.sum delta confl uip1 used∗ .0435
rdb1.used for uip creation .0435
rdb0.activity rel .0416
rdb1.act ranking top 10∗ .0351
rdb1.last touched diff∗ .0346
rdb1.sum delta confl uip1 used .0293
cl.lbd rel∗ .0217
cl.lbd rel queue∗ .0176
cl.size rel∗ .0152
cl.size∗ .0148
cl.antecedents lbd long reds max .0146
rdb1.activity rel .0139
cl.lbd rel long∗ .0135

(b) Best features for keep-long

Table 2: Table of feature rankings. We refer the reader to Appendix for inter-
pretation of each of the features. Features marked with a ∗ were used in both
classifiers, except for the ones marked with ∗∗ that were left out of the keep-short
classifier. The only feature not present in these rankings but used is dump no,
the number of times a learned clause has been up for deletion.

future work. We compare the augmented solver vis-a-vis Maple LCM Dist, whose
tiered set of classifiers serves as inspiration for our classifiers short-keep and
long-keep. We performed the comparison over all the unique 934 instances from
SAT Competitions 2014-17 with a timeout of 5000 seconds.

In summary, CryptoMiniSat augmented with our classifiers, referred to as
PredCryptoMiniSat, could solve 612 formulas, obtaining a PAR-2 score5 of 3761077
while Maple LCM Dist could only solve 591 obtaining a PAR-2 score of 4039152. It
is worth recalling that our classifiers are learned only using UNSAT instances and
therefore, we had data corresponding to only 236 out of 945 formulas. In particular,
PredCryptoMiniSat solved 271 satisfiable instances and 341 unsatisfiable instances,

5 PAR-2 score is defined as the sum of all runtimes for solved instances + 2*timeout
for unsolved instances, lowest score wins. This scoring mechanism has been used in
most recent SAT Competitions
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which is in line with the distribution of known SAT and UNSAT instances among
the problems. The ability of the learned classifier to handle SAT instances almost
as well as UNSAT instances, along with being able to outperform the state-of-
the-art solver of 2017, provides strong evidence in support for the component
design choices of CrystalBall.

It is essential to analyze the above results through an appropriate lens.
First, the latest hand tuned model in CryptoMiniSat allows it to solve 637
formulas with a PAR-2 score of 3506488. Although this is significantly bet-
ter than PredCryptoMiniSat, it has been tuned over many years. Secondly, our
model is not optimized for memory consumption which leads to significantly
increased cache misses, hence increased runtime. To be able to use all 22 fea-
tures, PredCryptoMiniSat keeps an additional 68 bytes of data for each clause.
Furthermore, a fine-tuned version with fewer features and perhaps more than two
classifiers is likely to result in improved runtime. Therefore, overall we believe
that our learned model not only highlights surprising power of several features
but could also be a starting point to design state of the art solvers by using
auto-generated data-driven yet interpretable models.

5 Conclusion

In this paper, we introduced to the SAT community our framework, CrystalBall,
to analyze and generate classifiers using significant amounts of behavioral data
collected from the run of a SAT solver. CrystalBall combines data collection
of its forward pass with proof data using DRAT-trim in its backward pass
to allow studying more than 260 UNSAT instances from SAT Competitions.
Our preliminary results demonstrate the potential of data-driven approach to
accurately predict whether to keep or throw away learned clauses and to rank
features that are useful and in this prediction. Our experiments were able to not
only derive interesting set of features but also demonstrate the strength of our
solver on competition benchmarks.

As a next step, we plan to extend CrystalBall to allow easier integration with
other state of the art SAT solvers. In the long term, we believe CrystalBall will
both enable to better understand SAT solvers and lower the barrier to designing
heuristics for high-performance SAT solvers. Finally, given the requirement of
tight integration of learned models into state of the art SAT solvers, CrystalBall
presents exciting opportunities for the design of interpretable machine learning
models.
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