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Abstract. Given a formula F , the problem of model counting, also
known as #SAT, is to compute the number of satisfying assignments of
F . While model counting has emerged as a crucial primitive in diverse
domains from quantitative information flow analysis to neural network
verification, scalability remains a fundamental challenge despite advances
in both exact and approximate counting techniques.
We present Ganak2, a novel framework that achieves substantial per-
formance improvements through three key technical innovations: (1)
a dual independent set framework maintaining distinct SAT-eligibility
and decision sets, (2) chronological backtracking specifically adapted to
model counting, and (3) refined residual formula processing incorporating
SAT-specific techniques while maintaining seamless state transitions.
Our empirical evaluation on 1600 previous model counting competition
instances demonstrates that Ganak2 successfully computes counts for 1121
instances within the one hour time limit, compared to 1032 instances by
the prior state of the art approach, representing an 8.7% improvement.
This progress is especially remarkable considering the extensive develop-
ment and refinement of model counting tools over the years, driven by
yearly competitive evaluation in the field.

1 Introduction

Given a Boolean formula F , the problem of model counting, also known as #SAT,
is to compute |Sol(F )|, i.e., the number of satisfying assignments of F . Model
counting is #P-complete [37], a complexity class that characterizes counting
problems associated with NP decision problems. Toda’s theorem established
that a single call to a #P oracle suffices to solve any problem in the polynomial
hierarchy [36].

Despite its computational intractability, the practical significance of model
counting has driven sustained research into developing effective algorithmic tech-
niques, particularly in response to applications across diverse domains, including
quantitative information flow analysis [8], network reliability [6], neural network
verification [1], and probabilistic inference. For example, given a neural network
N and an input domain X , verifying robustness properties involves encoding the



network’s behavior as a Boolean formula F such that each satisfying assignment of
F corresponds to an input-output pair (x, y) where x ∈ X and y = N (x) violates
the desired property. The verification question then reduces to determining if
|Sol(F )| = 0, while quantitative guarantees about the network’s behavior can be
obtained by computing |Sol(F )|/|X |, representing the fraction of inputs leading
to property violations. The practical impact of model counting in these domains
has led to sustained interest in developing scalable counters, as evidenced by
yearly model counting competitions [9].

The development of model counting techniques has followed two primary
trajectories. The first trajectory focuses on exact counting techniques, which
integrate core technical advances from SAT solving: component caching to exploit
problem decomposition, conflict-driven clause learning (CDCL) to prune the
search space, and decision heuristics informed by structural properties of the
formula. The second trajectory pursues approximate model counting through
universal hashing techniques, exemplified by ApproxMC, which provides theoreti-
cal guarantees of (ε, δ) while achieving improved scalability. Recent efforts have
focused on the development of specialized preprocessing techniques and advanced
component caching schemes to handle industrial-scale instances. Although signifi-
cant progress has been made in both exact and approximate counting techniques,
the fundamental challenge of scalability remains a crucial bottleneck for practical
deployment.

This work focuses on advancing exact model counting through careful algorith-
mic improvements to Ganak, a well-performing probabilistic exact model counter.
We call the resulting counter Ganak2, which achieves significant performance
improvements through the following technical contributions:

1. Enhanced Residual Formula Processing: Development of an optimized
SAT solver architecture for residual formula processing that incorporates
VSIDS scoring, restarts, and polarity caching.

2. Dual Independent Set Framework: Development of a novel algorith-
mic framework that maintains distinct SAT-eligibility (S) and decision (D)
sets, where the S-set determines SAT solver transitions while the D-set
guides branching decisions. This separation enables more efficient search
space exploration, especially when combined with enhanced residual formula
processing.

3. Chronological Backtracking: Adaptation of chronological backtracking to
model counting, with the aim to mitigate challenges associated with learnt
clause retention, and a specific emphasis on addressing the complications
that arise in the context of weighted model counting.

Our extensive empirical evaluation demonstrates significant performance
improvements across different configurations of Ganak2. The optimal configuration
of Ganak2 solves 1121 instances within the timeout period of 3600 seconds,
compared to the baseline configuration that solves only 784 instances. This
represents a substantial improvement of over 40% in the number of solved
instances. In comparison to prior state of the art, Ganak shows significant runtime



performance improvement: prior state of the art counter finishes only on 1032
instances within the same one hour time limit, a loss of 89 instances. Furthermore,
the time-to-solution curves show that Ganak2 maintains better performance
throughout the solving process, with particularly strong gains in the 500-1000
second range. These results demonstrate that careful algorithmic engineering
can substantially improve the practical efficiency of exact model counting while
maintaining theoretical guarantees.

The rest of the paper is organized as follows: Section 2 provides essential
preliminaries and background on model counting and top-down counters. Section 3
surveys related work in model counting. Section 4 presents our key technical
contributions: chronological backtracking integration, SAT solver optimizations
for residual formula processing, and our dual independent set framework. Section 5
provides a comprehensive experimental evaluation of Ganak2, analyzing the impact
of each algorithmic improvement on counter performance. Finally, Section 6
provides a summary of the key contributions and findings of this work.

2 Preliminaries

Let X = {x1, x2, . . . xn} be a set of Boolean variables. A literal is either a
variable (x) or its negation (¬x). A clause is a disjunction of literals, and a
Boolean formula F is in conjunctive normal form (CNF) if it is a conjunction
of clauses. An assignment σ : X 7→ {0, 1} is called a satisfying assignment or
solution of F if it makes F evaluate to true. We denote the set of all solutions of
F by Sol(F ).

In weighted model counting, each literal l is assigned a weight W (l) ∈ [0, 1].
The weight of an assignment σ, denoted w(σ), is the product of weights of all
literals that are satisfied by σ: W (σ) =

∏
l:σ satisfies l w(l). Given a formula F

and weight function W , the weighted model count of F , denoted W (F ), is the
sum of weights of all satisfying assignments: W (F ) =

∑
σ∈Sol(F ) w(σ)

A probabilistic exact counter takes in a formula F , a weight function W ,
and δ, and returns c such that Pr[c = W (F )] ≥ 1 − δ. The unweighted model
counting problem is a special case where all literal weights are 1, in which case
W (F ) = |Sol(F )|. Often, we are interested in counting over a subset of variables.
Given a subset of variables P ⊆ X, we denote by Sol(F )↓P the projection of
Sol(F ) onto variables in P . Formally, two assignments σ1 and σ2 belong to the
same equivalence class if they agree on their assignments to P . For weighted
model counting, the weight of a projected solution is the sum of weights of all
solutions in its equivalence class.

Components and Residual Formulas Modern model counters employ component
decomposition and caching [30] to achieve scalability. A component is a subformula
that can be solved independently of the rest of the formula. Formally, given
a formula F and an assignment σ to a subset of variables, a component is a
maximal set of clauses C ⊆ F |σ such that for any other component C ′, we have
Vars(C) ∩ Vars(C ′) = ∅, where F |σ denotes the formula obtained by substituting



the assignment σ in F . This F |σ is called a residual formula when it is being
created by the model counter while running: residual formulas are being created
at a high pace in model counters, as after each decision and propagation, the
remaining formula F |σ is a residual formula that needs to be counted. A residual
formula is made up of one or more components, each component being a connected,
independent (sub)formula of a residual formula.

Probabilistic Component Caching Component caching is crucial for the perfor-
mance of model counters. Each component is uniquely identified by its signature,
which typically consists of (1) the list of variables appearing in the component
(vars), and (2) the list of clause IDs in the component (cls). The efficiency of
component caching significantly impacts the overall performance of model coun-
ters, as it allows reuse of previously computed results when identical components
are encountered during the counting process. Ganak [32] introduced probabilistic
component caching, where the vars+ cls signature is hashed to reduce the memory
footprint. This introduces the possibility of hash collisions, which may lead to
incorrect results with arbitrarily small (but nonzero) probability, controlled by
the user-specified parameter δ.

Tree Decompositions Treewidth is a graph parameter that measures how closely
a graph resembles a tree [4], capturing the complexity of problems [29] by
decomposing the graph into a tree-like structure of bounded-size subsets.

Independent Set Instances to be counted always contain a so-called projection set
P , which in the case of so-called unprojected instances is the set of all variables.
The independent set of an instance is a set of variables I such that if P was
replaced with I, the instance would have the same exact model count. Hence,
the most trivial independent set is I = P . Minimization of the independent set is
a key optimization in model counting, as demonstrated by the work of Lagniez
et al. [21]. While I is often a subset of P (as is the case in [21,33]), this does not
have to be the case. It can be a subset, superset, or entirely different than P . As
long as the model count remains the same, the independent set is valid. In our
work, we consider independent sets that are either subsets or supersets of P .

3 Related Work

The development of efficient model counting techniques has witnessed sustained re-
search effort over the past two decades, with several distinct algorithmic paradigms
emerging. The earliest approaches to practical model counting extended the DPLL
framework through systematic enumeration of partial solutions [3]. A significant
breakthrough came with Bayardo and Pehoushek’s introduction of component
caching [18], which exploits the observation that for a formula φ decomposable
into components C1, C2, . . . , Cn with disjoint variable sets, |Sol(φ)| =

∏
i |Sol(Ci)|.

The key insight was that identical components often recur in different parts of
the search, making caching an effective optimization strategy.



Integration of component caching with Conflict Driven Clause Learning
(CDCL) marked another pivotal development, first realized in the Cachet model
counter [30]. This approach was further refined by Thurley through sharpSAT
[35], which introduced improved component encoding schemes and enhanced
decision heuristics. More recently, Ganak [32] advanced this line of research by
incorporating probabilistic caching strategies and leveraging independent set
information to guide search heuristics. Recent years have seen growing interest
in exploiting low-width tree decompositions for model counting. Notable imple-
mentations include gpusat [11], NestHDB [15], and DPMC-LG [5], each taking
distinct approaches to leveraging tree structure. While gpusat and the tensor im-
plementation of DPMC-LG employ pure dynamic programming approaches with
time complexity exponential in treewidth, NestHDB adopts a hybrid strategy,
incorporating sharpSAT-style‡ search for high-treewidth subproblems. SharpSAT-
TD [19] represents a significant advancement in this direction by integrating
tree decomposition information directly into variable selection heuristics while
maintaining the core CDCL architecture.

Recent work has focused on integrating algorithmic techniques from satisfia-
bility solving to improve performance. Enhanced preprocessing techniques, such
as those pioneered by B+E [21], SharpSAT-TD’s preprocessor [20], and Arjun [33]
have been developed that preserve model count while reducing formula size. In
a similar vein, blocked clause elimination [17] has been adopted by Lagniez et
al. [22] to the counter d4 with great success. Despite these advances, substantial
challenges remain in scaling to challenging instances and handling diverse formula
structures.

4 Technical Overview

This section presents our key technical contributions in enhancing the scalability
of exact model counting. Section 4.1 describes our refined SAT solver integration,
which incorporates restarts, VSIDS scoring, and polarity caching for residual
formula processing. Section 4.2 introduces our dual independent set framework,
which maintains distinct sets for SAT-eligibility and decision variables to opti-
mize search space exploration. Finally, Section 4.3 describes our adaptation of
chronological backtracking for model counting, with particular attention to the
challenges arising in weighted counting scenarios.

4.1 Enhanced Residual Formula Processing

A key optimization in modern model counting is the integration of SAT solving
for residual formula processing in gpmc by Suzuki et al. [34]. This approach
leverages the observation that once all variables in any given independent set are
assigned, the residual formula can be processed using a SAT solver rather than

‡Note that the respective authors chose to capitalize sharpSAT and SharpSAT-TD
differently.



continuing with the more expensive model counting procedure. The intuition
behind this approach is that if the SAT solver finds a satisfying assignment, the
count of the residual formula is 1; otherwise, it is 0.

The original implementation in gpmc ensures consistency with the model
counter through several design choices. It shares core data structures including
watchlists, propagation queues, and assignment stacks between the SAT solving
and model counting phases. Our implementation builds upon this foundation
through several enhancements to the SAT solving phase. We adopt VSIDS
scoring§ [24] in place of VSADS [31] for more effective variable decisions, make
use of polarity caching [28] and introduce Luby-based restarts [16] that were
previously absent. We also seamlessly integrate it with chronological backtracking
[26] as later explained, to allow smooth transition between SAT solving and
model counting phases.

These improvements integrate established SAT solving techniques within the
model counter’s SAT solving engine. Our implementation maintains the same core
data structures and algorithms as the model counter, with two key differences:
component analysis is disabled, and the component cache is ignored during SAT
solving phases, as they hold no relevance to the SAT solver, and would only slow
down solving. Conflict analysis, clause database management, and propagation
proceed as normal. The system handles two critical scenarios elegantly: when
a learned clause necessitates backtracking to a level prior to the SAT solver’s
initialization, the system smoothly reverts to model counting. Conversely, upon
finding a satisfying assignment, the solver computes the appropriate count, 1
for unweighted, or the product of weights for weighted counting, and returns
control to the model counting procedure. In case of weighted model counting
and a satisfying assignment, the count maybe different than 1, because we allow
projected (and hence often weighted) variables to be part of the SAT solver’s
assignment, as explained below.

4.2 Dual Independent Set Framework

Model counting techniques have traditionally sought to minimize the given projec-
tion set, which is an independent set, driven by two key objectives: (1) enabling
Bounded Variable Elimination (BVE) [7] for non-independent set variables, and
(2) facilitating early transition to SAT solving through a small independent
set. However, this unified approach imposes unnecessary constraints on model
counting performance. We propose a novel framework that explicitly maintains
two distinct independent set sets optimized for different purposes.

Definition 1 (Dual Independent Set). Given a Boolean formula F defined
over variables V and a projection set P, a dual independent set consists of:

§VSADS is a variant of VSIDS that uses additional literal frequency information
called DLCS, to make better decisions. However, DLCS is expensive to compute, and
hence no high-performance SAT solver uses it. We follow suit, using VSIDS in SAT
solving mode, improving performance.



S-set A SAT-eligibility set S ⊆ P that determines when SAT solver mode
transition is permissible.

D-set A decision set D ⊆ V that guides branching variable selection, where
D ⊇ P.

This formulation generalizes traditional approaches where D = S ⊆ P , instead
aiming for S ⊆ P ⊆ D.

The key insight underlying our framework is that the D and S-sets serve
fundamentally different purposes in the model counting process. Consider a
variable y that is functionally determined by a set of variables X, where y ∈
P,X ⊂ P, y /∈ X. While y can be excluded from S since its value is fully
determined once all variables in P are assigned (as established by Padoa’s
Theorem [27]), including y in D may still enable more efficient search space
exploration as it allows more flexible branching. Note that this works even if y
is weighted, as its value (and hence contribution to the weight) is always fixed
given the values of X¶.

The aim of maintaining a larger decision set (D-set) than SAT-eligibility set
(S-set) is to reduce the treewidth of the residual formula after the decision has
been made and propagated. Treewidth has been established to be a key factor in
model counting performance [19]: lower treewidth is known to lead to significantly
better performance. A larger D-set provides more flexibility in variable ordering,
which can reduce the residual formulas’ treewidth and minimize the formula’s
interconnectedness. This means the counter can choose variables that create more
independent subproblems, effectively breaking the original complex formula into
smaller, more manageable components. Hence, fewer components can cover the
same search space. This behavior is demonstrated in our experimental results in
Section 5, where the number of components encountered decreases as we enable
(and extend) dual independent set—and count significantly more instances.

¶In our framework if a variable xw is weighted, it can be removed from D but cannot
be removed from S and hence cannot be eliminated. The elimination of xw would
require the function xw = f(X) to be computed, a technique from functional synthesis
[13], which is beyond the scope of this work.



Example 1. Consider the following formula F over variables X =
{x1, x2, x3, y, z} and projection set P = {x1, x2, x3}

F =(x1 ∨ x2) ∧ (x2 ∨ x3)∧
(y ↔ (x1 ∧ x2)) ∧ (x3 ↔ (x1 ⊕ x2)) ∧ (z ↔ (x1 ∨ y))

Observe that x3 is functionally determined by {x1, x2}, y is determined
by {x1, x2}, and z is determined by {x1, y}. With these dependencies
in mind, here is one possible S and D-set: S = {x1, x2} ⊂ P, and
D = {x1, x2, x3, y, z} ⊃ P This dual set configuration reduces the S-set
by one variable while allowing a set one larger than P for decisions. This
allows the SAT solver to be invoked earlier, while maintaining flexible
branching choices during the model counting phase.

Given an initial projection set P, we are interested in computing approxi-
mations of Dmax and Smin such that Dmax = maximizeD⊇P{|D|} and Smin =
minimizeS⊆P{|S|}. We aim for approximations only, since computing these can
be computationally expensive, as they both rely on definability, which is known
to be hard [21,33,12].

S-Set Minimization We now turn our attention to the computation of minimal
S-sets, which happens to coincide with the well-studied problem of independent
set minimization. We demonstrate the non-confluence property using a formula
F defined over the variable set X = {x1, x2, x3} with projection set P = X:

F = (x3 ↔ (x1 ∨ x2)) ∧ (x2 ↔ (x1 ∨ x3))

Starting with S = X, let us examine variable removal sequences. Variable x3

can be removed from S since it is functionally determined by assignments to
x1 and x2. Similarly, x2 can be removed since it is functionally determined
by assignments to x1 and x3. However, attempting to remove both x2 and x3

simultaneously yields an invalid S-set {x1}.
Thus, the minimal S-set obtained depends critically on the order of variable

removal operations, as previously noted by Lagniez et al. [21]. We employ Arjun
[33], a state of the art independent set minimization tool to efficiently compute
our SAT-eligibility sets.

D-Set Maximization A trivial D-set that is often (much) larger than the S-set
is the projection set given by the instance, P. In fact, for unprojected instances,
this encompasses all variables. For projected instances however, it maybe possible
to enlarge P, as we explain below.

Algorithm 1 formalizes our approach to D-set maximization. The first phase
performs syntactic expansion through gate-based analysis (identifying gates as
per [33]), systematically identifying variables that could be part of the decision
set (D-set) due to structural properties of the formula. This phase exploits the



Algorithm 1 Computing maximal decision set Dmax. SemanticExpansion is
step-limited, aborting if it takes too many computing steps

Require: Formula F , projection set P
Ensure: Maximal decision set Dmax where P ⊆ Dmax

1: D ← P ▷ Initialize with projection variables
2: G← ExtractGates(F ) ▷ Extract OR, ITE, XOR gates
3: procedure SyntacticExpansion(V )
4: changed← V
5: while changed is not empty do
6: v ← changed.pop()
7: for gate g ∈ G where v is input do
8: if Inputs(g) ⊆ D ∧Output(g) /∈ D then
9: D ← D ∪ {Output(g)}
10: changed.append(Output(g))

11: return D
12: end procedure
13: procedure SemanticExpansion
14: for v /∈ D do
15: if ValidateDecisionVar(D ∪ {v}, F ) then
16: D ← D ∪ {v}
17: D ← SyntacticExpansion({v}) ▷ Quick check with syntactic analysis

18: return D
19: end procedure
20: D ← SyntacticExpansion(P ) ▷ Phase 1: Syntactic analysis
21: D ← SemanticExpansion ▷ Phase 2: Semantic analysis
22: return D

observation that if all inputs to a logical gate (OR‖, ITE, XOR) are in the D-set,
its output variable can be added without requiring expensive semantic analysis.
The algorithm iteratively applies this rule until reaching a fixed point, ensuring
complete coverage of syntactically derivable additions.

The second phase deals with variables whose inclusion cannot be determined
through purely syntactic means. Here, we employ semantic analysis through the
ValidateDecisionVar routine, which verifies whether adding a variable to the
D-set preserves model counting correctness. This is exactly the algorithm as
presented in [21] except when it is definable, we include the variable, rather than
exclude it, thus making the algorithm confluent. While computationally more
expensive than syntactic analysis, this phase is necessary to identify more valid
decision variables that may elude syntactic detection.

The separation into syntactic and semantic phases offers significant practical
benefits. By exhaustively applying lightweight syntactic analysis before moving
to costly semantic checks, the algorithm often achieves substantial decision set
expansion while minimizing computational overhead.

‖Note that AND gates are OR gates, with all inputs and the output negated. See
De Morgan’s laws [23]. Since we deal with literals, OR gates are sufficient to extract.



All variables in the formula

D-setPS-set

Fig. 1: Illustration of the relationship between the projection set P, the decision
set D-set, and the SAT-eligibility set S-set. Previous model counters have D = S.
In our framework we first set D = P , and then extend D to include more variables,
if possible, using Algorithm 1.

4.3 Chronological Backtracking

Chronological backtracking [26] (i.e. ChronoBT) is a technique in SAT solving
invented to mitigate the issue that SAT solvers would backtrack to decision level
0 whenever a unit clause is learnt. The requirement to backtrack to level 0 in
case of a learned unit clause is due to the strict invariants imposed by classical,
non-chronological CDCL architecture. In case of very large industrial instances,
such as those that the inventors of ChronoBT were working on [25], this lead to
a lot of wasted work: solver would go back to level 0, re-decide and re-propagate
much of the current trail, soon find another unit clause, go back to level 0, etc.

Within the context of model counting, the idea of chronological backtracking
serves a different purpose. Whenever a clause is learnt that would necessitate
backtracking to a level lower than the one below, all current top-down model
counters discard the learned clause and backtrack only one level, considering the
branch to have zero solutions. While this avoids counting a branch that contains
no solutions, it also means that the same fact is either re-learnt again, or never
learnt. Hence, the counter may find itself attempting to repeatedly count parts
of the space that contain no solutions—solutions that would already have been
banned by the discarded learned clause. As shown in Table 2, our experiments
demonstrate that the number of conflicts is significantly reduced when using
ChronoBT: to count more formulas, we need to conflict on average 2.5x less.

The algorithm that decides whether chronological backtracking is performed
in [26] is shown in Algorithm 2. The key insight of this algorithm is that it only
performs non-chronological backtracking when it is beneficial to do so. This is
the case when the analyzer suggests backtracking more than a certain threshold
of levels, which can lead to much wasted work. In in our framework, ChronoBT
is used to avoid re-learning the same clause or re-counting already counted
components, and is always on.

The adaptation of chronological backtracking to model counting introduces
additional complexities related to component caching and solution counting
that are not present in SAT solving. In weighted model counting, when a solver
performs non-chronological backtracking, it must not only maintain the logical
consistency of the search, but also ensure the correctness of weight computations.
In particular, each partial assignment contributes to the final weight multiplica-



Algorithm 2 Deciding when to perform chronological backtracking

1: Input: backtrack level b, current decision level d, threshold t
2: Output: New decision level b
3: h← highest decision level in learnt clause except d
4: if only one literal from highest level in conflict clause then
5: return h− 1 ▷ Chronological backtrack

6: if d− b > t then return h− 1 ▷ Chronological backtrack
7: else return b ▷ Non-Chronological backtrack

lev 0

lev 1

1

x2 = 1

2

x2 = 0

x1 = 0

lev 1

3

x3 = 1

4 E

x3 = 0

x1 = 1

Fig. 2: In this example, we illustrate what happens when the system explores
the left side of a graph, nodes 1 and 2. Then backtracks to level 0 and explores
the right side, nodes 3 and 4. At node 4, the system learns the unit clause x3.
This unit clause’s level is 0, but due to ChronoBT, we only backtrack to level
1. However, the system has already multiplied in the weight of x3 into nodes
1, 2, and 3. These nodes’ weights, which are all on the left side of an already
explored branch (branches “lev 0” and “lev 1”), need to be compensated

tively. When chronological backtracking is employed, the solver must carefully
track which weights need to be preserved and which should be discarded.

In our implementation, we took the approach that all components start
with a weight of one, and only when a literal is unset, and the literal is part
of the currently counted component, the literal’s weight is multiplied into the
current component’s weight. In order to know if a variable is part of the current
component, during decision analysis, we set incomp[lev][var] = mark for all
variables considered for decision (i.e. part of the D-set of the component), where
mark is a 64-bit number starting at 0 and incremented at each decision. Thismark
is saved for each level at marks[lev] = mark. Hence, while unsetting the literal
(i.e. while backtracking), it is a cheap check of incomp[lev][var] == marks[lev]
to decide if at decision level lev variable var was in the component. If it was,
its weight is multiplied in. This approach is cheap and works well, counting all
components’ weights correctly as long as there is no chronological backtracking.

Weight Management During Counting. Chronological backtracking introduces
significant complexities to the weight management system in model counting.



lev 0

lev 1

1

x2 = 1
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x2 = 0

x1 = 0

lev 1

x1 = 1

3 4 5 E
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Fig. 3: In this example, x4, which is part of components 1,2,3, and 4, but not
part of component 5 is learned to be false at level 0. This sounds impossible,
as x4 is clearly not part of component 5 (since it is part of 3 and 4), so it
should never be part of a learned clause while examining component 5. However,
components are decided purely based on irredundant clauses. It is possible
that learned clauses connect components. These can lead to contradictions over
variables not part of the component currently examine, and hence a learned
clause that implies a literal that’s not in the component we are examining.

Consider the scenario illustrated in Figure 2. The counter first explores left, and
then the right branches. The complications arise during right branch exploration,
where a weighted literal previously set&unset during left branch exploration may
be unset again at a higher decision level, if the variable is assigned at a lower
decision level due to ChronoBT. When backtracking, the literal will be unset
again, multiplying its weight twice into the left components. To maintain correct
weight calculations, the system must compensate by dividing he left branches’
current counts by the literal’s weight, in order to avoid double-counting.

A second, more subtle complexity emerges from the interaction between
learned clauses and component decomposition, illustrated in Figure 3. Component
separation in state of the art model counters examine only the original formula
clauses, not learned clauses. Consider variables x and y where y is not in the
current component under examination. A learned clause of the form ¬x ∨ y
may enable propagation of y, despite y not being part of the component. This
creates an interesting scenario: had ¬x ∨ y been an original clause, x and y
would necessarily belong in the same component. As demonstrated in Figure
3, this interaction allows learned clauses within the current component to force
assignments to variables outside the component’s scope. This can lead to learned
clauses asserting literals outside the scope of the current component, attached
at a higher level than the current component. When backtracking, this literal
will be unset, and its weight multiplied in. However, since it is not part of the
currently examined component, it may have already been multiplied in, when
examining previous components. To account for this case, we need to check
sibling components if the asserted, lower level literal is in them, and compensate
accordingly, as in Algorithm 3.



Algorithm 3 Weight fixing for chronological backtracking. We use the remaining
components to figure out if the variable has been counted by the already processed
components. This is because sharpSAT, on which Ganak2 is based, only keeps detailed
track of remaining components.

1: Executed: every time a literal is set
2: Inputs: literal to set: lit decision level to set: lit lev current decision level: lev
3: Invariants: lit lev ≤ lev
4: for i← lit lev to lev do
5: inside← incomp[i][var] == marks[i]
6: if ¬inside then break ▷ Cannot be in greater decision levels

7: if i > lit lev AND on right side of branch at decision level i then
8: divide left side of branch at level i by weight(lit)

9: already counted← true
10: d← decision node at level i
11: for all remaining components comp of d do
12: for all variable v in comp do
13: if v == lit.var then {already counted← false; break}
14: if already counted then divide active branch at level i by weight(lit)

5 Experimental Evaluation

We implemented Ganak2 in C++∗∗, building upon the codebase of the original
Ganak probabilistic exact model counter. Our implementation integrates Arjun
[33] for preprocessing with Ganak’s core architecture for exact model counting,
with the improvements described in Section 4: enhanced SAT solving for residual
formula processing, dual independent set framework with SAT-eligibility set
(S-set) minimization and decision set (D-set) maximization, and chronological
backtracking adapted to model counting.

The experimental evaluation was conducted on a cluster consisting of AMD
EPYC 7713 CPUs, with each particular benchmark running on a single core with
a memory limit of 9 GB and a time limit of one hour. For all other counters,
we used a memory limit of 45 GB††. Both Arjun and Ganak2 uses the GNU MP
infinite precision arithmetic library‡‡ for weighted computations. While this is
known to be often slower and more memory-hungry than high-precision floating-
point arithmetic, it is exact. All other tools used high-precision floating-point
arithmetic for weighted model counting, as default. To establish the correctness of
Ganak2, it was extensively fuzzed via SharpVelvet§§, a tool that generates random

∗∗We plan to release Ganak2 as open-source software in case of paper acceptance
††Counters are optimized for the large amount of memory available during the Model

Counting Competition (32GB). While Ganak2 can deal with smaller memory footprint,
partially due to its probabilistic component caching scheme, we did not want to unfairly
penalize other counters

‡‡https://gmplib.org/
§§https://github.com/meelgroup/SharpVelvet

https://gmplib.org/
https://github.com/meelgroup/SharpVelvet


(un)projected and (un)weighted benchmarks in the Model Counting Competition
format, and compares the count across different model counters.

Our benchmark suite comprised of the Model Counting Competition [10]
benchmark suite from 2023 and 2024, for all standard standard tracks: un/weighted
and un/projected in all combinations. This makes up 2x4x200=1600 publicly
accessible benchmarks¶¶ ranging from small to large benchmarks with diverse
structural characteristics, sourced from a broad range of application domains.

To rigorously evaluate Ganak2’s performance, we conduct comprehensive com-
parisons against three leading state of the art model counters: SharpSAT-TD,
gpmc, and d4. The selection of these tools is motivated by their distinct technical
approaches and established performance profiles. SharpSAT-TD represents the
current performance frontier in preprocessing [20] and introduced treewidth
decomposition techniques to exact model counting [19]. The d4 counter has long
been at the forefront of d-DNNF compilation-based model counting, and recently
introduced a novel approach based on dynamic blocked clause elimination [22].
The inclusion of gpmc is motivated by its original idea of using a SAT solver to
compute a solution to the residual formula [34], and its strong performance in
previous competitions. All tools were obtained from the 2024 Model Counting
Competition Zenodo repository∗∗∗. and were run with their configurations as per
their respective competition scripts. All tools have preprocessing systems similar
to Arjun, integrated. Note that SharpSAT-TD only supports unprojected bench-
marks, hence it has been left out of comparisons where projected benchmarks are
considered. It is worth remarking that Ganak2, Ganak, and SharpSAT-TD rely on
probabilistic component caching, and therefore are probabilistic exact counters.
The value of δ is determined by the bit-width of the hash functions, which is set
to 64, leading to a δ of 0.001.

The primary objectives of our experimental evaluation were twofold: (1)
To systematically evaluate Ganak2’s performance relative to other state of the
art model counters, and (2) to quantitatively assess the runtime performance
improvements achieved by Ganak2 compared to the baseline Ganak.

5.1 Comparison with Prior State of the Art

We conducted an extensive empirical evaluation to compare Ganak2 against state
of the art model counters: Ganak, gpmc, d4, and SharpSAT-TD.

Figure 4 presents the cumulative distribution function (CDF) plots showing
the number of instances solved within different time limits. For unprojected
benchmarks (left plot), Ganak2 exhibits consistently superior performance, solv-
ing 550 instances compared to 523 instances by SharpSAT-TD, the next best
performer. For projected benchmarks (right plot), where SharpSAT-TD is not
applicable, the improvement is even more substantial, with Ganak2 solving 571

¶¶MCComp 2023 benchmarks at: https://zenodo.org/records/10012864
MCComp 2024 benchmarks at: https://zenodo.org/records/14249068

∗∗∗https://zenodo.org/records/14249109

https://zenodo.org/records/10012864
https://zenodo.org/records/14249068
https://zenodo.org/records/14249109
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Fig. 4: Cumulative distribution function of Ganak2 against prior state of the art
counters

instances compared to 518 by d4, representing a 10% improvement over the
closest competitor.

Table 1 provides a detailed quantitative analysis of the performance metrics.
We begin with results on all the instances. We see that Ganak2 is able to return
counts for 1121 instances while d4 finishes only on 1032 instances, an increase
of 89 instances. As model counting tools have matured over the years, such an
increase in the number of instances counted would be considered significant.
Furthermore, observe that the PAR2††† score for d4 is 1478 while Ganak2 achieves
a PAR2 score of 1322. For unprojected benchmarks, Ganak2 achieves a PAR2
score of 1362, representing an 11% improvement over d4’s score of 1496. The
results are similarly impressive for projected benchmarks, where Ganak2 achieves
a PAR2 score of 1283, significantly better than d4’s 1461 and gpmc’s 1519. The
memory consumption pattern is consistent across both benchmark sets, with
Ganak2 maintaining an approximately 25-50% lower memory footprint compared
to other counters.

5.2 Analysis of Algorithmic Improvements

To understand the relative contribution of different algorithmic innovations in
Ganak2, we conducted a comprehensive evaluation across multiple configurations.
Table 2 presents a comprehensive analysis of Ganak2’s performance across different
configurations, where each row represents an incremental enhancement to the
system’s capabilities. The columns show the most relevant metrics for model
counting performance: the number of benchmarks counted, the PAR2 score,
average memory usage (Mem), the average number of components processed
(Comps), and the average number of conflicts encountered (Confls).

Let’s turn our attention to the dual independent set framework and its im-
provement, the decision set extension algorithm. The 1600 benchmarks had 2297
median number of variables, of which a median of 208 were projection variables.

†††The PAR2 score is a performance metric, the Penalized Average Runtime for each
benchmark: if the benchmark is counted, the score is the runtime, and if a timeout
occurs, a value of double the time limit (7200 in our case) is used.



(a) Unprojected benchmarks

Tool Counted PAR2 Avg
Mem(MB)

Ganak 391 2030 1176
gpmc 420 1881 1506
d4 514 1496 1314
SharpSAT-TD 523 1530 1129
Ganak2 550 1362 869

(b) Projected benchmarks

Tool Counted PAR2 Avg
Mem(MB)

Ganak 387 2027 1383
gpmc 513 1519 1588
d4 518 1461 1867
Ganak2 571 1283 925

Combined Results

Tool Counted PAR2 Avg
Mem(MB)

Ganak 784 2022 1279
gpmc 933 1700 1151
d4 1032 1478 1591
Ganak2 1121 1322 898  400
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Table 1: Performance analysis of Ganak2 vis-a-vis other state of the art counters
across different benchmark categories

After simplification algorithms such as backbone detection [2], equivalent literal
substitution [14], and bounded variable elimination [7], the median number of
variables was reduced to 410 by Arjun [33]. Further, Arjun computed a median
S-set 89 for these CNFs. By allowing the now reduced projection set to be the
D-set, this number could be increased to a median of 182. Once our maximal
decision set algorithm (Algorithm 1) is enabled, this climbs to 208. This exten-
sion took an average of 0.26s for the SyntacticExpansion and 44.7s for the
SemanticExpansion functions. They extended the projection set, whenever
they could, by a median of 9 and 87 variables, respectively.

In Table 3, we present the performance of Ganak2 on a single benchmark,
149.cnf from the Model Counting Competition 2023 Track 3 (projected model
counting), with different configurations. The benchmark originally had 6629
variables and 19329 clauses, with a projection set size of 68. Arjun reduced this
to 638 variables and 4110 clauses, meanwhile reducing the projection set size to
41. It then computed an SAT-eligibility (S-set) of size 39. Using our maximal
decision set algorithm, we extended the decision set (D-set) size from 41 to 47.
As we turn on our enhancements, the instance is solved significantly faster, with
less memory usage, fewer components, and fewer conflicts.

The results demonstrate several key insights. First, using Chronological Back-
tracking and a SAT solver significantly improves performance while decreasing
memory usage, decreasing the number of conflicts, and visited components.



Table 2: Ablation study of Ganak2 with improvements added incrementally, on
all benchmarks. First row is baseline Ganak, last row is equivalent to Ganak2

Configuration Counted PAR2 Avg
Mem(MB)

Avg
Confls(M)

Avg
Comps(M)

Ganak baseline 778 2029 1279 1.04 64.05
+ ChronoBT + SAT solver 906 1766 1059 0.42 56.94
+ SAT solver Enhancements 924 1738 1048 0.36 55.56
+ D = P 1071 1418 900 0.28 45.72
+ D-set Max (=Ganak2) 1121 1322 898 0.28 45.41

Table 3: Benchmark 149.cnf from the Model Counting Competition 2023 Track 3
(projected model counting) with different configurations of Ganak2

Configuration Time (s) Mem
(MB)

Confls
(K)

Decs
(M)

Comps
(K)

S-set D-set

Ganak baseline timeout 962 N/A N/A N/A 39 –
+ ChronoBT + SAT solver 1049.25 554 2063 112.21 5464 39 –
+ SAT solver Enhancements 821.05 550 1319 20.65 5315 39 –
+ D = P 815.54 547 1214 20.53 5307 39 41
+ D-set Max (=Ganak2) 738.32 549 1230 20.90 5292 39 47

Furthermore, the dual independent set framework significantly enhances perfor-
mance, leading to measurable reductions across all key metrics. Finally, extending
the D-set yields additional performance improvements, though these gains are
comparatively modest relative to the other enhancements. Comparing Ganak2
vis-a-vis the baseline, particularly interesting is the reduction in the number
of components processed, dropping from an average of 64.05M in the baseline
configuration to 45.41M for Ganak2. This substantial decrease suggests that
enhancements in Ganak2 effectively guide the counter toward more efficient
benchmark decomposition strategies.

6 Conclusion

In this paper, we presented Ganak2, a novel framework for model counting
that achieves significant performance improvements thanks to three key algo-
rithmic contributions. First, our dual independent set framework demonstrates
that maintaining distinct SAT-eligibility and decision sets enables more efficient
space exploration while preserving counting correctness. Second, our enhanced
chronological backtracking mechanism, specifically adapted for model counting,
addresses the computational challenges in both projected and unprojected sce-
narios through careful management of component caching and learned clauses.
Finally, our refined SAT solver integration achieves seamless state transitions
while incorporating advanced features from modern SAT solvers.



Our comprehensive empirical evaluation demonstrates that these technical
innovations translate into substantial practical improvements. The ability to
solve approximately 1100 instances within the timeout period, compared to 800
instances for baseline configurations, represents a significant advancement in the
state of the art for exact model counting.
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Congrès international de philosophie. vol. 3, pp. 309–365 (1901)

28. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007.
LNCS, vol. 4501, pp. 294–299. Springer (2007). https://doi.org/10.1007/

978-3-540-72788-0_28

29. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309–322 (1986)

30. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proc. of SAT (2004)

31. Sang, T., Beame, P., Kautz, H.A.: Heuristics for fast exact model counting. In:
Bacchus, F., Walsh, T. (eds.) SAT. LNCS, vol. 3569, pp. 226–240. Springer (2005).
https://doi.org/10.1007/11499107_17

32. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A scalable probabilistic exact
model counter. In: Proc. of IJCAI. pp. 1169–1176 (2019)

33. Soos, M., Meel, K.S.: Arjun: an efficient independent support computation technique
and its applications to counting and sampling. In: ICCAD. pp. 1–9 (2022)

34. Suzuki, R., Hashimoto, K., Sakai, M.: Improvement of projected model-counting
solver with component decomposition using SAT solving in components. Tech. Rep.
SIG-FPAI-103-B506, JSAI Technical Report (Mar 2017)

35. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT. LNCS, vol. 4121, pp. 424–429.
Springer (2006). https://doi.org/10.1007/11814948_38

36. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991). https://doi.org/10.1137/0220053

https://arxiv.org/abs/2308.15819
https://doi.org/10.4230/LIPICS.SAT.2024.21
https://doi.org/10.4230/LIPICS.SAT.2024.21
https://doi.org/10.4230/LIPICS.SAT.2024.21
https://doi.org/10.4230/LIPICS.SAT.2024.21
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-72788-0\_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0\_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/11499107\_17
https://doi.org/10.1007/11499107_17
https://doi.org/10.1007/11814948\_38
https://doi.org/10.1007/11814948_38
https://doi.org/10.1137/0220053
https://doi.org/10.1137/0220053


37. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM
Journal on Computing 8(3), 410–421 (1979)


	 Engineering an Efficient Probabilistic Exact Model Counter 

